|
--- |
|
base_model: karakuri-ai/karakuri-lm-70b-chat-v0.1 |
|
license: llama2 |
|
language: |
|
- ja |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# CapyBaraHermes 2.5 Mistral 7B - GPTQ |
|
- Model creator: [karakuri-ai](https://huggingface.co/karakuri-ai) |
|
- Original model: [KARAKURI LM 70B Chat v0.1](https://huggingface.co/karakuri-ai/karakuri-lm-70b-chat-v0.1) |
|
|
|
# Description |
|
|
|
This repo contains AWQ model files for [KARAKURI LM 70B Chat v0.1](https://huggingface.co/karakuri-ai/karakuri-lm-70b-chat-v0.1). |
|
|
|
## How to get the AWQ model |
|
|
|
I created AWQ model files by using used autoawq==0.2.3. |
|
```bash |
|
pip install autoawq==0.2.3 |
|
``` |
|
|
|
This is the Python code to create AWQ model. |
|
```bash |
|
from awq import AutoAWQForCausalLM |
|
from transformers import AutoTokenizer |
|
|
|
model_path = "karakuri-ai/karakuri-lm-70b-chat-v0.1" |
|
|
|
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" } |
|
|
|
# Load model |
|
model = AutoAWQForCausalLM.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) |
|
|
|
# Quantize |
|
model.quantize(tokenizer, quant_config=quant_config, calib_data="mmnga/wikipedia-ja-20230720-1k") |
|
|
|
quant_path = "karakuri-lm-70b-v0.1-AWQ" |
|
model.save_quantized(quant_path) |
|
tokenizer.save_pretrained(quant_path) |
|
``` |
|
|
|
## Usage |
|
|
|
```bash |
|
from vllm import LLM, SamplingParams |
|
|
|
sampling_params = SamplingParams(temperature=0.0, max_tokens=100) |
|
llm = LLM(model="masao1211/karakuri-lm-70b-chat-v0.1-AWQ", max_model_len=4096) |
|
|
|
system_prompt = "System prompt" |
|
|
|
|
|
messages = [{"role": "system", "content": "System prompt"}] |
|
messages.append({"role": "user", "content": "User Prompt"}) |
|
prompt = llm.llm_engine.tokenizer.tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False) |
|
prompts = [prompt] |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
for output in outputs: |
|
prompt = output.prompt |
|
generated_text = output.outputs[0].text |
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") |
|
``` |