|
--- |
|
license: mit |
|
base_model: prajjwal1/bert-tiny |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: fine_tune_bert_output |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fine_tune_bert_output |
|
|
|
This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0094 |
|
- Overall Precision: 0.9722 |
|
- Overall Recall: 0.9722 |
|
- Overall F1: 0.9722 |
|
- Overall Accuracy: 0.9963 |
|
- Number Of Employees F1: 0.9722 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 150 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Number Of Employees F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:----------------------:| |
|
| 0.0011 | 50.0 | 1000 | 0.0046 | 0.9722 | 0.9722 | 0.9722 | 0.9963 | 0.9722 | |
|
| 0.0003 | 100.0 | 2000 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0002 | 150.0 | 3000 | 0.0094 | 0.9722 | 0.9722 | 0.9722 | 0.9963 | 0.9722 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|