SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
time |
|
no |
|
Evaluation
Metrics
Label | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
all | 0.75 | 0.75 | 0.75 | 0.75 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("i’ve just been making sure that it is healthier food and not unhealthy food.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 12 | 25.325 | 60 |
Label | Training Sample Count |
---|---|
no | 36 |
time | 44 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 3786
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.005 | 1 | 0.2939 | - |
0.25 | 50 | 0.2641 | - |
0.5 | 100 | 0.195 | - |
0.75 | 150 | 0.0162 | - |
1.0 | 200 | 0.0007 | - |
1.25 | 250 | 0.0003 | - |
1.5 | 300 | 0.0002 | - |
1.75 | 350 | 0.0001 | - |
2.0 | 400 | 0.0001 | - |
2.25 | 450 | 0.0002 | - |
2.5 | 500 | 0.0013 | - |
2.75 | 550 | 0.0002 | - |
3.0 | 600 | 0.0006 | - |
3.25 | 650 | 0.0015 | - |
3.5 | 700 | 0.0008 | - |
3.75 | 750 | 0.0001 | - |
4.0 | 800 | 0.0001 | - |
4.25 | 850 | 0.0007 | - |
4.5 | 900 | 0.0001 | - |
4.75 | 950 | 0.003 | - |
5.0 | 1000 | 0.0001 | - |
5.25 | 1050 | 0.0018 | - |
5.5 | 1100 | 0.0001 | - |
5.75 | 1150 | 0.0001 | - |
6.0 | 1200 | 0.0014 | - |
6.25 | 1250 | 0.0001 | - |
6.5 | 1300 | 0.0009 | - |
6.75 | 1350 | 0.0001 | - |
7.0 | 1400 | 0.0002 | - |
7.25 | 1450 | 0.0 | - |
7.5 | 1500 | 0.0 | - |
7.75 | 1550 | 0.0002 | - |
8.0 | 1600 | 0.0 | - |
8.25 | 1650 | 0.0006 | - |
8.5 | 1700 | 0.0 | - |
8.75 | 1750 | 0.0 | - |
9.0 | 1800 | 0.0 | - |
9.25 | 1850 | 0.0 | - |
9.5 | 1900 | 0.0 | - |
9.75 | 1950 | 0.0 | - |
10.0 | 2000 | 0.0 | - |
Framework Versions
- Python: 3.11.7
- SetFit: 1.1.1
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.5.1
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for lucienbaumgartner/temporalInformation_classifier
Evaluation results
- Accuracy on Unknowntest set self-reported0.750
- Precision on Unknowntest set self-reported0.750
- Recall on Unknowntest set self-reported0.750
- F1 on Unknowntest set self-reported0.750