SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-l
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("llm-wizard/legal-ft-1")
# Run inference
sentences = [
    'What criteria determine whether an AI system used in the administration of justice is classified as high-risk?',
    'Certain AI systems intended for the administration of justice and democratic processes should be classified as high-risk, considering their potentially significant impact on democracy, the rule of law, individual freedoms as well as the right to an effective remedy and to a\xa0fair trial. In particular, to address the risks of potential biases, errors and opacity, it is appropriate to qualify as high-risk AI systems intended to be used by a\xa0judicial authority or on its behalf to assist judicial authorities in researching and interpreting facts and the law and in applying the law to a\xa0concrete set of facts. AI systems intended to be used by alternative dispute resolution bodies for those purposes should also be considered to be high-risk when',
    'which one or more of the following conditions are fulfilled. The first such condition should be that the AI system is intended to perform a\xa0narrow procedural task, such as an AI system that transforms unstructured data into structured data, an AI system that classifies incoming documents into categories or an AI system that is used to detect duplicates among a\xa0large number of applications. Those tasks are of such narrow and limited nature that they pose only limited risks which are not increased through the use of an AI system in a\xa0context that is listed as a\xa0high-risk use in an annex to this Regulation. The second condition should be that the task performed by the AI system is intended to improve the result of a\xa0previously completed human',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.9583
cosine_accuracy@3 1.0
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.9583
cosine_precision@3 0.3333
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.9583
cosine_recall@3 1.0
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.9792
cosine_mrr@10 0.9722
cosine_map@100 0.9722

Training Details

Training Dataset

Unnamed Dataset

  • Size: 400 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 400 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 10 tokens
    • mean: 20.52 tokens
    • max: 35 tokens
    • min: 5 tokens
    • mean: 93.01 tokens
    • max: 186 tokens
  • Samples:
    sentence_0 sentence_1
    What are the intended uses of AI systems by tax and customs authorities according to the context? natural persons or groups, for profiling in the course of detection, investigation or prosecution of criminal offences. AI systems specifically intended to be used for administrative proceedings by tax and customs authorities as well as by financial intelligence units carrying out administrative tasks analysing information pursuant to Union anti-money laundering law should not be classified as high-risk AI systems used by law enforcement authorities for the purpose of prevention, detection, investigation and prosecution of criminal offences. The use of AI tools by law enforcement and other relevant authorities should not become a factor of inequality, or exclusion. The impact of the use of AI tools on the defence rights of suspects should
    How should the use of AI tools by law enforcement authorities be managed to prevent inequality or exclusion? natural persons or groups, for profiling in the course of detection, investigation or prosecution of criminal offences. AI systems specifically intended to be used for administrative proceedings by tax and customs authorities as well as by financial intelligence units carrying out administrative tasks analysing information pursuant to Union anti-money laundering law should not be classified as high-risk AI systems used by law enforcement authorities for the purpose of prevention, detection, investigation and prosecution of criminal offences. The use of AI tools by law enforcement and other relevant authorities should not become a factor of inequality, or exclusion. The impact of the use of AI tools on the defence rights of suspects should
    What was requested by the European Parliament? requested by the European Parliament (6).
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 10
  • per_device_eval_batch_size: 10
  • num_train_epochs: 10
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 10
  • per_device_eval_batch_size: 10
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step cosine_ndcg@10
1.0 40 0.9715
1.25 50 0.9792
2.0 80 0.9792
2.5 100 0.9715
3.0 120 0.9638
3.75 150 0.9715
4.0 160 0.9792
5.0 200 0.9623
6.0 240 0.9777
6.25 250 0.9777
7.0 280 0.9792
7.5 300 0.9715
8.0 320 0.9715
8.75 350 0.9792
9.0 360 0.9792
10.0 400 0.9792

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.2
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
0
Safetensors
Model size
334M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for llm-wizard/legal-ft-1

Finetuned
(26)
this model

Evaluation results