m-minilm-l12-h384-mal-fake-news-classification-finetune

This model is a fine-tuned version of microsoft/Multilingual-MiniLM-L12-H384 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8794
  • Accuracy: 0.4363
  • F1: 0.2166

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 9

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.3471 0.1639 10 1.4536 0.1553 0.0672
1.2911 0.3279 20 1.2582 0.2411 0.1537
1.2636 0.4918 30 1.3826 0.1537 0.0745
1.2154 0.6557 40 1.0301 0.6137 0.2469
1.1791 0.8197 50 1.1587 0.1574 0.0691
1.2399 0.9836 60 1.4052 0.1532 0.0720
1.1257 1.1475 70 1.1222 0.1816 0.0882
1.0962 1.3115 80 1.1921 0.3526 0.1984
1.0212 1.4754 90 1.0585 0.5495 0.2286
1.0066 1.6393 100 1.2323 0.4032 0.2104
1.0602 1.8033 110 1.1407 0.4689 0.2245
1.011 1.9672 120 1.2531 0.4574 0.2325
0.9486 2.1311 130 1.1423 0.5653 0.2472
0.9424 2.2951 140 1.3199 0.3037 0.1727
0.9735 2.4590 150 1.0358 0.6553 0.2457
0.9892 2.6230 160 1.0562 0.6295 0.2448
0.8846 2.7869 170 1.0899 0.5789 0.2376
0.9204 2.9508 180 1.3385 0.4458 0.2259
0.8902 3.1148 190 1.4512 0.4105 0.2182
0.8491 3.2787 200 1.1497 0.5447 0.2312
0.8567 3.4426 210 1.0907 0.5968 0.2363
0.8506 3.6066 220 1.3783 0.4337 0.2207
0.842 3.7705 230 1.4938 0.4095 0.2135
0.7925 3.9344 240 1.3065 0.4605 0.2154
0.7968 4.0984 250 1.2324 0.5642 0.2412
0.7923 4.2623 260 1.5467 0.3568 0.1892
0.7458 4.4262 270 1.3496 0.4816 0.2318
0.7178 4.5902 280 1.2238 0.5474 0.2347
0.7137 4.7541 290 1.2769 0.5163 0.2291
0.6994 4.9180 300 1.5223 0.4337 0.2211
0.6336 5.0820 310 1.4191 0.4732 0.2244
0.6684 5.2459 320 1.7668 0.3605 0.1954
0.6454 5.4098 330 1.4999 0.4668 0.2214
0.6323 5.5738 340 1.5826 0.4526 0.2260
0.6324 5.7377 350 1.7798 0.3837 0.2044
0.6381 5.9016 360 1.4990 0.4853 0.2250
0.5801 6.0656 370 1.7669 0.4147 0.2111
0.5732 6.2295 380 1.4530 0.5058 0.2196
0.5559 6.3934 390 1.7865 0.4063 0.2089
0.5755 6.5574 400 1.7828 0.43 0.2165
0.6038 6.7213 410 1.9098 0.4074 0.2151
0.6015 6.8852 420 1.8687 0.4063 0.2085
0.5537 7.0492 430 1.7365 0.4521 0.2224
0.5531 7.2131 440 1.6996 0.4574 0.2212
0.4868 7.3770 450 1.8164 0.4311 0.2165
0.5178 7.5410 460 1.7618 0.4474 0.2156
0.513 7.7049 470 1.7670 0.45 0.2168
0.5172 7.8689 480 1.7683 0.4589 0.2211
0.4938 8.0328 490 1.8544 0.4316 0.2116
0.4623 8.1967 500 1.7937 0.4484 0.2167
0.4679 8.3607 510 1.7579 0.4732 0.2242
0.4872 8.5246 520 1.7625 0.47 0.2233
0.4853 8.6885 530 1.8132 0.4537 0.2200
0.4772 8.8525 540 1.8794 0.4363 0.2166

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
183
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for livinNector/m-minilm-l12-h384-mal-fake-news-classification-finetune

Finetuned
(28)
this model