|
--- |
|
license: other |
|
license_name: llama-3 |
|
license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/raw/main/LICENSE |
|
|
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: lightblue/suzume-llama-3-8B-multilingual |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
model_type: LlamaForCausalLM |
|
tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: /workspace/llm_training/axolotl/llama3-multilingual/tagengo_openchat_megagon.json |
|
ds_type: json # see other options below |
|
type: sharegpt |
|
conversation: llama-3 |
|
dataset_prepared_path: /workspace/llm_training/axolotl/llama3-multilingual/prepared_tagengo_openchat_megagon |
|
val_set_size: 0.01 |
|
output_dir: /workspace/llm_training/axolotl/llama3-multilingual/output_tagengo_openchat_megagon_8B_llama3 |
|
|
|
sequence_len: 8192 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
use_wandb: true |
|
wandb_project: wandb_project |
|
wandb_entity: wandb_entity |
|
wandb_name: wandb_name |
|
|
|
gradient_accumulation_steps: 2 |
|
micro_batch_size: 2 |
|
num_epochs: 1 |
|
optimizer: paged_adamw_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 1e-5 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
gradient_checkpointing_kwargs: |
|
use_reentrant: false |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 5 |
|
eval_table_size: |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json |
|
weight_decay: 0.0 |
|
special_tokens: |
|
pad_token: <|end_of_text|> |
|
``` |
|
|
|
</details><br> |
|
|
|
<p align="center"> |
|
<img width=400 src="https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/kg3QjQOde0X743csGJT-f.png" alt="Suzume - a Japanese tree sparrow"/> |
|
</p> |
|
|
|
# Suzume |
|
|
|
This Suzume 8B, a multilingual finetune of Llama 3. |
|
|
|
Llama 3 has exhibited excellent performance on many English language benchmarks. |
|
However, it also seemingly been finetuned on mostly English data, meaning that it will respond in English, even if prompted in other languages. |
|
|
|
We have fine-tuned Llama 3 on almost 90,000 multilingual conversations meaning that this model has the smarts of Llama 3 but has the added ability to chat in more languages. |
|
|
|
Please feel free to comment on this model and give us feedback in the Community tab! |
|
|
|
# How to use |
|
|
|
The easiest way to use this model on your own computer is to use the [GGUF version of this model (lightblue/suzume-llama-3-8B-multilingual-gguf)](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-gguf) using a program such as (jan.ai)[https://jan.ai/] or [LM Studio](https://lmstudio.ai/). |
|
|
|
If you want to use this model directly in Python, we recommend using vLLM for the fastest inference speeds. |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
|
|
sampling_params = SamplingParams(temperature=0.0, max_tokens=100) |
|
llm = LLM(model="lightblue/suzume-llama-3-8B-multilingual") |
|
|
|
messages = [] |
|
messages.append({"role": "user", "content": "Bonjour!"}) |
|
prompt = llm.llm_engine.tokenizer.tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False) |
|
prompts = [prompt] |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
for output in outputs: |
|
prompt = output.prompt |
|
generated_text = output.outputs[0].text |
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") |
|
``` |
|
|
|
# Evaluation scores |
|
|
|
We achieve the following MT-Bench scores across 6 languages: |
|
|
|
|
|
|
|
# Training data |
|
|
|
We train on three sources of data to create this model: |
|
|
|
* [lightblue/tagengo-gpt4](https://huggingface.co/datasets/lightblue/tagengo-gpt4) - 76,338 conversations |
|
* A diverse dataset of initial inputs sampled from [lmsys/lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) and then used to prompt `gpt-4-0125-preview` |
|
* [megagonlabs/instruction_ja](https://github.com/megagonlabs/instruction_ja) - 669 conversations |
|
* A hand-edited dataset of nearly 700 Japanese conversations taken originally from translations of the [kunishou/hh-rlhf-49k-ja](https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja) dataset. |
|
* [openchat/openchat_sharegpt4_dataset](https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset/resolve/main/sharegpt_gpt4.json) - 6,206 conversations |
|
* Conversations taken from humans talking to GPT-4 |
|
|
|
# workspace/llm_training/axolotl/llama3-multilingual/output_tagengo_openchat_megagon_8B_llama3 |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the above described dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6595 |
|
|
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.1894 | 0.0 | 1 | 1.0110 | |
|
| 0.8493 | 0.2 | 73 | 0.7057 | |
|
| 0.8047 | 0.4 | 146 | 0.6835 | |
|
| 0.7644 | 0.6 | 219 | 0.6687 | |
|
| 0.7528 | 0.8 | 292 | 0.6615 | |
|
| 0.7794 | 1.0 | 365 | 0.6595 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.0 |
|
|