vit-base-patch16-224-in21k-v2024-11-07
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1875
- Accuracy: 0.9449
- F1: 0.8664
- Precision: 0.8559
- Recall: 0.8772
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0808 | 1.1905 | 100 | 0.1574 | 0.9408 | 0.8531 | 0.8614 | 0.8450 |
0.0908 | 2.3810 | 200 | 0.1861 | 0.9318 | 0.8327 | 0.8321 | 0.8333 |
0.1393 | 3.5714 | 300 | 0.2000 | 0.9298 | 0.8297 | 0.8191 | 0.8406 |
0.0911 | 4.7619 | 400 | 0.1639 | 0.9360 | 0.8448 | 0.8345 | 0.8553 |
0.095 | 5.9524 | 500 | 0.1779 | 0.9393 | 0.8507 | 0.8519 | 0.8494 |
0.0767 | 7.1429 | 600 | 0.1691 | 0.9411 | 0.8563 | 0.8501 | 0.8626 |
0.0918 | 8.3333 | 700 | 0.1709 | 0.9375 | 0.8476 | 0.8415 | 0.8538 |
0.0742 | 9.5238 | 800 | 0.1703 | 0.9378 | 0.8471 | 0.8477 | 0.8465 |
0.0931 | 10.7143 | 900 | 0.1779 | 0.9351 | 0.8388 | 0.8488 | 0.8289 |
0.085 | 11.9048 | 1000 | 0.1835 | 0.9351 | 0.8427 | 0.8319 | 0.8538 |
0.0712 | 13.0952 | 1100 | 0.1886 | 0.9339 | 0.8377 | 0.8377 | 0.8377 |
0.0616 | 14.2857 | 1200 | 0.1863 | 0.9351 | 0.8429 | 0.8310 | 0.8553 |
0.0628 | 15.4762 | 1300 | 0.1815 | 0.9387 | 0.8499 | 0.8474 | 0.8523 |
0.0571 | 16.6667 | 1400 | 0.1749 | 0.9449 | 0.8685 | 0.8451 | 0.8933 |
0.0496 | 17.8571 | 1500 | 0.1781 | 0.9384 | 0.8484 | 0.8502 | 0.8465 |
0.0484 | 19.0476 | 1600 | 0.1859 | 0.9354 | 0.8406 | 0.8449 | 0.8363 |
0.0487 | 20.2381 | 1700 | 0.1697 | 0.9446 | 0.8642 | 0.8630 | 0.8655 |
0.0485 | 21.4286 | 1800 | 0.1876 | 0.9369 | 0.8470 | 0.8362 | 0.8582 |
0.042 | 22.6190 | 1900 | 0.1835 | 0.9414 | 0.8576 | 0.8484 | 0.8670 |
0.0367 | 23.8095 | 2000 | 0.1844 | 0.9432 | 0.8613 | 0.8557 | 0.8670 |
0.0339 | 25.0 | 2100 | 0.1816 | 0.9411 | 0.8578 | 0.8432 | 0.8728 |
0.0317 | 26.1905 | 2200 | 0.1817 | 0.9423 | 0.8602 | 0.8480 | 0.8728 |
0.0349 | 27.3810 | 2300 | 0.1799 | 0.9426 | 0.8592 | 0.8574 | 0.8611 |
0.0355 | 28.5714 | 2400 | 0.1932 | 0.9402 | 0.8540 | 0.8485 | 0.8596 |
0.0296 | 29.7619 | 2500 | 0.1875 | 0.9449 | 0.8664 | 0.8559 | 0.8772 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for liamxostrander/vit-base-patch16-224-in21k-v2024-11-07
Base model
google/vit-base-patch16-224-in21k