lesso18's picture
End of training
5565e75 verified
---
library_name: peft
base_model: Korabbit/llama-2-ko-7b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 6b0f310e-8dfe-4d77-ab87-585c355ba4ee
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<br>
# 6b0f310e-8dfe-4d77-ab87-585c355ba4ee
This model is a fine-tuned version of [Korabbit/llama-2-ko-7b](https://huggingface.co/Korabbit/llama-2-ko-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8646
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000218
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0001 | 1 | 1.3929 |
| 0.9803 | 0.0047 | 50 | 1.0977 |
| 0.7452 | 0.0094 | 100 | 1.0563 |
| 0.8894 | 0.0142 | 150 | 1.0474 |
| 0.878 | 0.0189 | 200 | 1.0044 |
| 0.8014 | 0.0236 | 250 | 0.9554 |
| 0.7658 | 0.0283 | 300 | 0.9113 |
| 0.6401 | 0.0331 | 350 | 0.8867 |
| 0.7264 | 0.0378 | 400 | 0.8729 |
| 0.7121 | 0.0425 | 450 | 0.8641 |
| 0.7067 | 0.0472 | 500 | 0.8646 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1