Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/CodeLlama-7b-hf
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 45fb2d361254b178_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/45fb2d361254b178_train_data.json
  type:
    field_input: counter_longer
    field_instruction: counter_statement
    field_output: question
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso07/5d60c946-401c-48e1-8965-0add168102bf
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/45fb2d361254b178_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 6344f2fc-fa2b-4848-99cc-8281347a9bf0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6344f2fc-fa2b-4848-99cc-8281347a9bf0
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

5d60c946-401c-48e1-8965-0add168102bf

This model is a fine-tuned version of NousResearch/CodeLlama-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0663

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
5.225 0.0015 1 2.5081
4.3724 0.0133 9 1.8550
0.3045 0.0267 18 0.3277
0.1793 0.0400 27 0.1456
0.1862 0.0534 36 0.1094
0.2247 0.0667 45 0.0892
0.0976 0.0801 54 0.0861
0.0406 0.0934 63 0.0725
0.0655 0.1067 72 0.0695
0.2142 0.1201 81 0.0686
0.308 0.1334 90 0.0667
0.0409 0.1468 99 0.0663

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for lesso07/5d60c946-401c-48e1-8965-0add168102bf

Adapter
(236)
this model