Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/Yarn-Llama-2-7b-64k
bf16: true
chat_template: llama3
datasets:
- data_files:
  - fd8cb244a58eab5a_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/fd8cb244a58eab5a_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: lesso01/32cc0f63-e69f-480d-a0ea-b4015b7b0923
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 25
micro_batch_size: 2
mlflow_experiment_name: /tmp/fd8cb244a58eab5a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 41c1cfc2-4854-41dd-aa2c-b18f0b6c6123
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 41c1cfc2-4854-41dd-aa2c-b18f0b6c6123
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

32cc0f63-e69f-480d-a0ea-b4015b7b0923

This model is a fine-tuned version of NousResearch/Yarn-Llama-2-7b-64k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8037

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 25

Training results

Training Loss Epoch Step Validation Loss
3.5627 0.0002 1 0.9583
3.9716 0.0008 5 0.9511
3.4151 0.0016 10 0.8704
3.0551 0.0024 15 0.8331
3.6 0.0033 20 0.8091
3.5221 0.0041 25 0.8037

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso01/32cc0f63-e69f-480d-a0ea-b4015b7b0923

Adapter
(248)
this model