lenant commited on
Commit
f076448
·
verified ·
1 Parent(s): 9511d90

wack model 100 steps only

Browse files
README.md CHANGED
@@ -6,23 +6,32 @@ tags:
6
  - reinforcement-learning
7
  - stable-baselines3
8
  model-index:
9
- - name: MlpPolicy
10
  results:
11
- - metrics:
12
- - type: mean_reward
13
- value: 226.81 +/- 11.75
14
- name: mean_reward
15
- task:
16
  type: reinforcement-learning
17
  name: reinforcement-learning
18
  dataset:
19
  name: LunarLander-v2
20
  type: LunarLander-v2
 
 
 
 
 
21
  ---
22
 
23
- # **MlpPolicy** Agent playing **LunarLander-v2**
24
- This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
-
26
- ## Usage (with Stable-baselines3)
27
- TODO: Add your code
28
-
 
 
 
 
 
 
 
 
 
6
  - reinforcement-learning
7
  - stable-baselines3
8
  model-index:
9
+ - name: PPO MLP
10
  results:
11
+ - task:
 
 
 
 
12
  type: reinforcement-learning
13
  name: reinforcement-learning
14
  dataset:
15
  name: LunarLander-v2
16
  type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -899.13 +/- 385.37
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
 
24
+ # **PPO MLP** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO MLP** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7785a22830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7785a228c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7785a22950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7785a229e0>", "_build": "<function ActorCriticPolicy._build at 0x7f7785a22a70>", "forward": "<function ActorCriticPolicy.forward at 0x7f7785a22b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7785a22b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7785a22c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7785a22cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7785a22d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7785a22dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7785a66d50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651949954.059757, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOCJVT7DFGg7k4VkunHcyLfY/R89xJyEOQAAgD8AAIA/gPMrvtxyN7z9Cv26TmPzuGmuoT3rlSA6AACAPwAAgD/e0bq+VVIQPtm0tD3+6ba9eB0ovs5Tor4AAAAAAAAAAJq21Dzh4IW60q8xuu8dg7Q2M6S6lbtMOQAAgD8AAIA/mhF9vB+9l7nMiQw6iVRUsx20mTouTSW5AACAPwAAgD8mID4+632VPdb3oTzRQAC+qEsePBOY+jwAAAAAAAAAACbbqD6mWoQ+Rv2YvQ6OIb74iAc9zuUWvAAAAAAAAAAAu06vvj+6Jj/nSwu+NDCgviYgZr5qBZo9AAAAAAAAAADNjzi+PUllu6H0GjZtckMzMHXxPGPVQrUAAIA/AACAPwA8x72ugZi6Oi/NOl6nojV7wA869jjtuQAAgD8AAIA/JqeOPY8CLLr8v0E6KyAxtJVdozvtQWG5AACAPwAAgD99aYI+rkHQO2Hyy70rcby9pma5vOlLjD0AAAAAAAAAAH3yZb5FT/o8Q2aSPTWyAjyYc6a+KB6/PQAAgD8AAIA/s/sWPfbcO7qUHUA85zu9tDZzUztpDaezAACAPwAAgD+7jKO+x7hHPxo/RL2Ey6++afq1vcOtdjwAAAAAAAAAADMj2DsflYC5rguNOd5RjbPLKTO7jhKnuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ9MRwE3oYkCUhpRSlIwBbJRN6AOMAXSUR0CTt/V0tAcDdX2UKGgGaAloD0MINIRjlj1cYUCUhpRSlGgVTegDaBZHQJPBJwGW2PV1fZQoaAZoCWgPQwguqdpugiZcQJSGlFKUaBVN6ANoFkdAk8GngYP5HnV9lChoBmgJaA9DCFDfMqfLzFxAlIaUUpRoFU3oA2gWR0CTy7BDXvphdX2UKGgGaAloD0MIZ55cUyChYECUhpRSlGgVTegDaBZHQJPM3PD50r91fZQoaAZoCWgPQwiy9QzhmIdcQJSGlFKUaBVN6ANoFkdAk9dUzj3mFXV9lChoBmgJaA9DCOhqK/aXY1lAlIaUUpRoFU3oA2gWR0CT2F189fTkdX2UKGgGaAloD0MIY2Adxw/lE8CUhpRSlGgVTRwBaBZHQJPk2LUCq6x1fZQoaAZoCWgPQwjy7PKtDzZdQJSGlFKUaBVN6ANoFkdAk+dlXzUZvXV9lChoBmgJaA9DCCdnKO54319AlIaUUpRoFU3oA2gWR0CT6tHZ9NN8dX2UKGgGaAloD0MIRFGgT+TkX0CUhpRSlGgVTegDaBZHQJPq+kUKzAx1fZQoaAZoCWgPQwjObcK9MsheQJSGlFKUaBVN6ANoFkdAk+/g6ZH/cXV9lChoBmgJaA9DCLr5RnTP6V9AlIaUUpRoFU3oA2gWR0CT8upBomG/dX2UKGgGaAloD0MIPDJWm/8fX0CUhpRSlGgVTegDaBZHQJP4eE384xV1fZQoaAZoCWgPQwj6RnTPuq9owJSGlFKUaBVNRwJoFkdAk/r8ox59mnV9lChoBmgJaA9DCAMHtHQFpmJAlIaUUpRoFU3oA2gWR0CT/bHlOoHcdX2UKGgGaAloD0MIWn9LAP75JkCUhpRSlGgVTSIBaBZHQJQAKTX8O091fZQoaAZoCWgPQwgRcXMqGU5dQJSGlFKUaBVN6ANoFkdAlAINWyTpxHV9lChoBmgJaA9DCMoa9RAN62FAlIaUUpRoFU3oA2gWR0CUA/7yQPqcdX2UKGgGaAloD0MIgpAsYAJtU0CUhpRSlGgVTegDaBZHQJQHBreqJdl1fZQoaAZoCWgPQwiVKHtLOexcQJSGlFKUaBVN6ANoFkdAlA8z1K5CnnV9lChoBmgJaA9DCEZ9kjtsS1NAlIaUUpRoFU3oA2gWR0CUD6IHkcS5dX2UKGgGaAloD0MIjJ3wEpzKKkCUhpRSlGgVTSoBaBZHQJQZYvduYQd1fZQoaAZoCWgPQwjaWIl51gxgQJSGlFKUaBVN6ANoFkdAlCPoptrKvHV9lChoBmgJaA9DCFWKHY1D11dAlIaUUpRoFU3oA2gWR0CUJOMy8BdVdX2UKGgGaAloD0MItrsH6L6SX0CUhpRSlGgVTegDaBZHQJQwovmHP/t1fZQoaAZoCWgPQwh9sffii846wJSGlFKUaBVNMAFoFkdAlDIRSUC7snV9lChoBmgJaA9DCCe9b3ztXGVAlIaUUpRoFU18AmgWR0CUMooMKCxvdX2UKGgGaAloD0MIEYsYdhibSUCUhpRSlGgVTegDaBZHQJQy+XY150N1fZQoaAZoCWgPQwikjLgANNBeQJSGlFKUaBVN6ANoFkdAlDX8fFJg9nV9lChoBmgJaA9DCFsHB3sTg1xAlIaUUpRoFU3oA2gWR0CUOk3LV4HHdX2UKGgGaAloD0MIPX0E/nAeYUCUhpRSlGgVTegDaBZHQJTDyILw4Kh1fZQoaAZoCWgPQwjWHCCYo65aQJSGlFKUaBVN6ANoFkdAlMkcophF3XV9lChoBmgJaA9DCMKFPIKbDGFAlIaUUpRoFU3oA2gWR0CUy6w6QvHtdX2UKGgGaAloD0MIHERrRRuPYUCUhpRSlGgVTegDaBZHQJTOdArxy4p1fZQoaAZoCWgPQwhL5IIz+GZfQJSGlFKUaBVN6ANoFkdAlND2RRuTA3V9lChoBmgJaA9DCM7jMJg/DWBAlIaUUpRoFU3oA2gWR0CU2Ao8p1A8dX2UKGgGaAloD0MIEW4yqgzDKMCUhpRSlGgVTTYBaBZHQJTf3FwT/Q11fZQoaAZoCWgPQwjUCz7NSX1jQJSGlFKUaBVN6ANoFkdAlODqEnLJS3V9lChoBmgJaA9DCFn7O9ujNV9AlIaUUpRoFU3oA2gWR0CU4Vs+V1OkdX2UKGgGaAloD0MIG0gXm1ayWUCUhpRSlGgVTegDaBZHQJT1papxWDJ1fZQoaAZoCWgPQwjBx2DFqVxaQJSGlFKUaBVN6ANoFkdAlPawUcn3L3V9lChoBmgJaA9DCDMzMzMz9lRAlIaUUpRoFU3oA2gWR0CVAqZWq95AdX2UKGgGaAloD0MIbtxifu5rY0CUhpRSlGgVTegDaBZHQJUD/vPTodN1fZQoaAZoCWgPQwhIizOGOTNjQJSGlFKUaBVN6ANoFkdAlQRxMnJDE3V9lChoBmgJaA9DCCfChqdXRmVAlIaUUpRoFU3oA2gWR0CVBOgOSW7fdX2UKGgGaAloD0MIFTqvscuVYkCUhpRSlGgVTegDaBZHQJUIIMRYigV1fZQoaAZoCWgPQwgQeGAA4dVkQJSGlFKUaBVN6ANoFkdAlQzG5Yoy9HV9lChoBmgJaA9DCHLg1XLnXGFAlIaUUpRoFU3oA2gWR0CVD8U4JeE7dX2UKGgGaAloD0MIeAyP/SynXkCUhpRSlGgVTegDaBZHQJUX8aLn9vV1fZQoaAZoCWgPQwiQaW0a2/lcQJSGlFKUaBVN6ANoFkdAlRr9uP3i73V9lChoBmgJaA9DCINtxJPdm15AlIaUUpRoFU3oA2gWR0CVHc6CDmKZdX2UKGgGaAloD0MIUnx8QnY1YUCUhpRSlGgVTegDaBZHQJUmOilBQep1fZQoaAZoCWgPQwizKVd4l3xgQJSGlFKUaBVN6ANoFkdAlS8nrQgLZ3V9lChoBmgJaA9DCA7Y1eQpCFpAlIaUUpRoFU3oA2gWR0CVMGx0+1SgdX2UKGgGaAloD0MILjnulA7RYECUhpRSlGgVTegDaBZHQJUw5/FzdUN1fZQoaAZoCWgPQwigxVIkX4pdQJSGlFKUaBVN6ANoFkdAlUYUlRgqmXV9lChoBmgJaA9DCDY7Un1nTWFAlIaUUpRoFU3oA2gWR0CVRx3GGVRldX2UKGgGaAloD0MIG2X9ZmLTXkCUhpRSlGgVTegDaBZHQJVUFg6U7jl1fZQoaAZoCWgPQwgzjLtBtCJfQJSGlFKUaBVN6ANoFkdAlVWdgBtDUnV9lChoBmgJaA9DCJIGt7WF4VpAlIaUUpRoFU3oA2gWR0CVViLWI42kdX2UKGgGaAloD0MIrkm3JXJWWkCUhpRSlGgVTegDaBZHQJVWnZtelbh1fZQoaAZoCWgPQwhnDd5X5fVZQJSGlFKUaBVN6ANoFkdAlVng2uPmxXV9lChoBmgJaA9DCCkiwypeU2FAlIaUUpRoFU3oA2gWR0CVXqvIwM6SdX2UKGgGaAloD0MIBoAqblyaYkCUhpRSlGgVTegDaBZHQJVhjHZK3/h1fZQoaAZoCWgPQwgZxt0g2q1hQJSGlFKUaBVN6ANoFkdAlfAmNFSbY3V9lChoBmgJaA9DCCAkC5jAtV9AlIaUUpRoFU3oA2gWR0CV8zOLR8c/dX2UKGgGaAloD0MIUwjkEsesY0CUhpRSlGgVTegDaBZHQJX2Bnwob4t1fZQoaAZoCWgPQwjnN0w0yIpgQJSGlFKUaBVN6ANoFkdAlf3o1k1/D3V9lChoBmgJaA9DCDkPJzCdDW9AlIaUUpRoFU1QAWgWR0CWAeya/h2odX2UKGgGaAloD0MIQS5x5IFwQ0CUhpRSlGgVS/poFkdAlgPL5hz/63V9lChoBmgJaA9DCA0Zj1IJ72RAlIaUUpRoFU3oA2gWR0CWBbNIsiB5dX2UKGgGaAloD0MIwvhp3JtKYECUhpRSlGgVTegDaBZHQJYGtiWmgrZ1fZQoaAZoCWgPQwjpfk5Bfs5aQJSGlFKUaBVN6ANoFkdAlgceZPVNH3V9lChoBmgJaA9DCEvIBz0bimVAlIaUUpRoFU3oA2gWR0CWG2QNkOI7dX2UKGgGaAloD0MI+rmhKbvJYUCUhpRSlGgVTegDaBZHQJYchYGMXJp1fZQoaAZoCWgPQwg9fQT+8F5gQJSGlFKUaBVN6ANoFkdAlimXH3lCC3V9lChoBmgJaA9DCMv0S8RbgzVAlIaUUpRoFUuuaBZHQJYq8ao/A0t1fZQoaAZoCWgPQwjxoNl1b7hjQJSGlFKUaBVN6ANoFkdAlisMf3evZHV9lChoBmgJaA9DCCwRqP5B/l1AlIaUUpRoFU3oA2gWR0CWK4dupCKKdX2UKGgGaAloD0MIL4hITbtPXkCUhpRSlGgVTegDaBZHQJYr9okAxSJ1fZQoaAZoCWgPQwgmbarukWlVQJSGlFKUaBVN6ANoFkdAli8JZSvTw3V9lChoBmgJaA9DCMWqQZhbKmFAlIaUUpRoFU3oA2gWR0CWM2TG5tm+dX2UKGgGaAloD0MI5rD7juEHa0CUhpRSlGgVTUoCaBZHQJY1foq0+kh1fZQoaAZoCWgPQwiEg72JIQleQJSGlFKUaBVN6ANoFkdAlkE6ASWZ7XV9lChoBmgJaA9DCH3LnC4LDWRAlIaUUpRoFU3oA2gWR0CWRAqAz544dX2UKGgGaAloD0MIDCJS064ZbUCUhpRSlGgVTW8BaBZHQJZG35ftx+91fZQoaAZoCWgPQwiY3v5cNDJcQJSGlFKUaBVN6ANoFkdAlkukMPSUknV9lChoBmgJaA9DCNY2xeMim2RAlIaUUpRoFU3oA2gWR0CWT6557gKndX2UKGgGaAloD0MIeT9uv3zqW0CUhpRSlGgVTegDaBZHQJZRhJjDsMR1fZQoaAZoCWgPQwgsRIfAEXBiQJSGlFKUaBVN6ANoFkdAllNRg3Lmp3V9lChoBmgJaA9DCDy858ByEWFAlIaUUpRoFU3oA2gWR0CWVE0EX+ERdX2UKGgGaAloD0MI3Xu45DivZECUhpRSlGgVTegDaBZHQJZpv7gsK9h1fZQoaAZoCWgPQwhCd0mcFVFhQJSGlFKUaBVN6ANoFkdAlna+0b961XV9lChoBmgJaA9DCJCIKZFEfV1AlIaUUpRoFU3oA2gWR0CWeC2i+L3sdX2UKGgGaAloD0MIH0jeORTkYkCUhpRSlGgVTegDaBZHQJZ4SCJ40Mx1fZQoaAZoCWgPQwjzGyYapDpgQJSGlFKUaBVN6ANoFkdAlnjDUd7v5XV9lChoBmgJaA9DCBqk4CnkRWFAlIaUUpRoFU3oA2gWR0CWfHpMpPRBdX2UKGgGaAloD0MI9fI7TWb6XECUhpRSlGgVTegDaBZHQJaBM2eg+Ql1fZQoaAZoCWgPQwjxoNl1b6FiQJSGlFKUaBVN6ANoFkdAloNhzzVc2XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 170, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e9ba9d41d80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e9ba9d41e10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e9ba9d41ea0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e9ba9d41f30>", "_build": "<function ActorCriticPolicy._build at 0x7e9ba9d41fc0>", "forward": "<function ActorCriticPolicy.forward at 0x7e9ba9d42050>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e9ba9d420e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e9ba9d42170>", "_predict": "<function ActorCriticPolicy._predict at 0x7e9ba9d42200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e9ba9d42290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e9ba9d42320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e9ba9d423b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e9ba9ee4700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 100, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1720394542789201193, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACElrtATr0/m2PVvIZ+Hz5A0cK7msVfPAAAAAAAAAAAyF1Mv6xuHz9aDI+/iWyJv0NGcD4sAgW+AAAAAAAAAACzEkY9osWIPxfnMz7SgEe/wxl4PSC1RbwAAAAAAAAAADOYvD1sMgg/lGCDPqdpcb/vp6699qcOPgAAAAAAAAAAZperPAIqoD8VVOQ9HRMcv+8Pn757nWI9AAAAAAAAAAALLNy+B4o5P4uTFb+Rima/TfgRPf5mg7wAAAAAAAAAAEB7er4gIHs/ffw1v/kWZ79wa409ZdjQvQAAAAAAAAAAbaIPPtC9tz8o6hM/1UgNvpw7ab4iw2G+AAAAAAAAAABzBS8+sKWIPk/2tj6OHq2/f8K0vn/Krb4AAAAAAAAAAKvmyb5Q+KA/jcZUvzRNIb+DWMo+rQX8PQAAAAAAAAAAZlm1PgdlpD8d+iw/E99Pv0Rvvr4a6OE9AAAAAAAAAACQX96+JMCLvQliJr/ZnrW/ofRJPKCbPr0AAAAAAACAP+U4jb66s5Q/8swPvx0zR78J4gU/+qAFPQAAAAAAAAAAZooMPt50ij9BRww/CyY2v6Sla77kWpO+AAAAAAAAAAC9SHu+sMXXPqIQ6L5KaZS/cdDtPT4CmL0AAAAAAAAAAGaGAj3zQ7g/6JNkPrlkT7yRX9G9FTU6vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -162.84, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGly6KDTSb+MAWyUS02MAXSUR0CJg0lHBk7PdX2UKGgGR8BYVGS2Yv38aAdLRmgIR0CJg7dMTN+tdX2UKGgGR8BrqnXGwRoRaAdLW2gIR0CJg/vcafjCdX2UKGgGR8Bwyom/nGKiaAdLW2gIR0CJhDG/etSydX2UKGgGR8B2fVkOI68yaAdLgWgIR0CJhEVymygPdX2UKGgGR8BrByMPz4DcaAdLR2gIR0CJhJKTSsr/dX2UKGgGR8Becw+pwS8KaAdLaGgIR0CJhPxOLzf8dX2UKGgGR8BLZ0yP+4smaAdLPmgIR0CJhSe1a4c4dX2UKGgGR8BpkYc94eLfaAdLb2gIR0CJhTuCwr1/dX2UKGgGR8BtgcRlHz6KaAdLUWgIR0CJhVdWyTpxdX2UKGgGR8Bcsmukk8ifaAdLUmgIR0CJhY4RVZLadX2UKGgGR8BUqz06HTJAaAdLTmgIR0CJhbHS4OMEdX2UKGgGR8BhaJzBAOawaAdLVmgIR0CJha+u/1xsdX2UKGgGR8BbxcnRb8m8aAdLlGgIR0CJha9tdiUgdX2UKGgGR8BTA21IAfdRaAdLRWgIR0CJhdQHAymAdX2UKGgGR8BuJHd9Dx9YaAdLUmgIR0CJhdACW/rTdX2UKGgGR8B05Nb9qDbraAdLXGgIR0CJheTcqOLjdX2UKGgGR8B16MIJJGvwaAdLgWgIR0CJhiUqx1PndX2UKGgGR8BTOXv+fh/BaAdLXGgIR0CJhsBbwBo3dX2UKGgGR8BayCDdxhlUaAdLS2gIR0CJhtIwudwvdX2UKGgGR8BzHFVbRne0aAdLXWgIR0CJhyQmNR3vdX2UKGgGR8BZg+3H7xd6aAdLPWgIR0CJhzpQk5ZKdX2UKGgGR8BUaWQKa5PNaAdLPGgIR0CJh6tpVS4wdX2UKGgGR8AxVYeT3Zf2aAdLV2gIR0CJh+rR0EHMdX2UKGgGR8BkokriEQGwaAdLTGgIR0CJh+k3S8aodX2UKGgGR8BgpV6eGwiaaAdLTWgIR0CJiA5byH2zdX2UKGgGR8ByqwHlfZ27aAdLY2gIR0CJiDoi9qUNdX2UKGgGR8BgP8zQ/oq1aAdLhWgIR0CJiEw35vcadX2UKGgGR8BzDUH3UQTVaAdLUmgIR0CJiFeLvTgEdX2UKGgGR8BoVnPw/gR9aAdLTmgIR0CJiJHQyAQQdX2UKGgGR8BeB8HbAUL2aAdLP2gIR0CJiNNliBoVdX2UKGgGR8BxuV7OVxCIaAdLaWgIR0CJiOxVyWAxdX2UKGgGR8BwU/vQWvbHaAdLf2gIR0CJiOjTrmhedX2UKGgGR8BVtYRAbADaaAdLPWgIR0CJiQQ5FPSEdX2UKGgGR8BvkDq+rU9ZaAdLcmgIR0CJiSsYEW69dX2UKGgGR8BZi57sv7FbaAdLamgIR0CJiSUrTYukdX2UKGgGR8BXL7ELpiZwaAdLO2gIR0CJiaT+vQnhdX2UKGgGR8Bhdk+7lJYlaAdLQ2gIR0CJigUhV2iddX2UKGgGR8BxHzhddE9daAdLXWgIR0CJif+qioKldX2UKGgGR8BojHZTQ3PzaAdLUWgIR0CJihVNHpbEdX2UKGgGR8BaDiFXaJyiaAdLSGgIR0CJinCxeLNwdX2UKGgGR8Bgs2zY287IaAdLemgIR0CJinmukk8idX2UKGgGR8BQ0ffKp1ifaAdLPGgIR0CJiuHB1s+FdX2UKGgGR8BqeRtzjm0WaAdLX2gIR0CJiwc2itaIdX2UKGgGR8BzS14NZvDQaAdLUmgIR0CJi3GaQV9GdX2UKGgGR8BoHGTibUgCaAdLeGgIR0CJi4RmK64EdX2UKGgGR8BkeD2WY4Q0aAdLdmgIR0CJi9GJemeldX2UKGgGR8B6tO79Q40eaAdLYmgIR0CJi9P420iRdX2UKGgGR8B4qXAoG6f8aAdLZWgIR0CJi/BE8aGYdX2UKGgGR8A2ZVsDW9UTaAdLPWgIR0CJi/KcNH6NdX2UKGgGR8BZKLONYKYzaAdLRmgIR0CJjCgvDgqFdX2UKGgGR8BmbG6PKdQPaAdLb2gIR0CJjCSKWLP2dX2UKGgGR8B2zInqmj0uaAdLWGgIR0CJjE6DGtITdX2UKGgGR8BiALkn1FpgaAdLN2gIR0CJjI66reZYdX2UKGgGR8BnleqFRHf/aAdLd2gIR0CJjLOX3QD3dX2UKGgGR8Bz4TJOnEVGaAdLjWgIR0CJjML6UJOWdX2UKGgGR8BbDebqhUR4aAdLTWgIR0CJjMxesxO+dX2UKGgGR8BtMYd2gWadaAdLeGgIR0CJjZKYiPhidX2UKGgGR8BvrG+K0lZ6aAdLYWgIR0CJjff7aZhKdX2UKGgGR8BiuBeJHiFTaAdLd2gIR0CJjg1gH/tIdX2UKGgGR8Bah52U0Nz9aAdLX2gIR0CJjk7tiQT3dX2UKGgGR8B02odaMaS+aAdLV2gIR0CJjnJlJ6IFdX2UKGgGR8BY5Ue6qbSaaAdLXWgIR0CJjr4k/r0KdX2UKGgGR8B34qg00m+kaAdLYWgIR0CJjt/IbOu8dX2UKGgGR8BilnLLZBcBaAdLZ2gIR0CJjvIhhYvGdX2UKGgGR8Blhnv0AcT8aAdLUmgIR0CJj14zrNW3dX2UKGgGR8BqTFUfgaWHaAdLgGgIR0CJj3vw3HaOdX2UKGgGR8Bc0h/I8yN5aAdLamgIR0CJj6VUMoc8dX2UKGgGR8Bq8c4HX2/SaAdLX2gIR0CJj7oIv8IidX2UKGgGR8ByVTdznzQNaAdLeGgIR0CJj+T8HfMwdX2UKGgGR8CAdFrKNhmYaAdLemgIR0CJj/nOB19wdX2UKGgGR8BhCKUTtb9qaAdLcGgIR0CJkBSiudPMdX2UKGgGR8BT5tmYjSogaAdLRGgIR0CJkHcWTHKfdX2UKGgGR8Bdcqdtl7MQaAdLd2gIR0CJkIRq46OpdX2UKGgGR8BnR/sHB1s+aAdLRGgIR0CJkJk92X9jdX2UKGgGR8B6X9xS5y2haAdLVWgIR0CJkKbRWtEHdX2UKGgGR8BcrXEETxoaaAdLZmgIR0CJkNAYYR/WdX2UKGgGR8BWuIlY2bXpaAdLRGgIR0CJkRuTibUgdX2UKGgGR8B3RquEEkjYaAdLUGgIR0CJkUj1PFefdX2UKGgGR8BdALYkE9t/aAdLZ2gIR0CJkU3H7xd6dX2UKGgGR8BUz6qGUOd5aAdLQWgIR0CJkXbiZOSGdX2UKGgGR8BlY+w7kn1GaAdLQmgIR0CJkbJmNBGAdX2UKGgGR8AtAE/0NBnjaAdLQWgIR0CJkgX531SPdX2UKGgGR8BZDpDNQj2SaAdLUGgIR0CJkkcYIjW1dX2UKGgGR8B2yXk0aZQYaAdLYmgIR0CJkuznA6+4dX2UKGgGR8Bak7UTcqOMaAdLTGgIR0CJky5ZKWcCdX2UKGgGR8BWVcoUi6g/aAdLQ2gIR0CJk1uHerMldX2UKGgGR8BV8NCqp97XaAdLemgIR0CJk2i0v4/NdX2UKGgGR8BVfCYsunMuaAdLlGgIR0CJk41l5GBndX2UKGgGR8CAWXeN1hb4aAdLX2gIR0CJk4PHT7VKdX2UKGgGR8ByCMNCqp97aAdLZGgIR0CJk516mfoSdX2UKGgGR8BiKBGFzuF6aAdLRWgIR0CJk6m1pj+adX2UKGgGR8BrqRujynUEaAdLjGgIR0CJk7zwMH8kdX2UKGgGR8BXbHpfQa73aAdLZGgIR0CJk9EfDDTCdX2UKGgGR8Bx/jd0q6OHaAdLTmgIR0CJlH7laKUFdX2UKGgGR8BqklGwzLwGaAdLbGgIR0CJlKosI3R5dX2UKGgGR8B20X4IrvsraAdLYWgIR0CJlMCEHt4SdX2UKGgGR0AscDW9US7HaAdLdGgIR0CJlLlo11nvdX2UKGgGR8B6/leOXE61aAdLjmgIR0CJlQg/1QIldX2UKGgGR8BRAFNQCSzPaAdLPGgIR0CJlTp3X7LudWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7c6be37da20413e3090d453eaecb88c17060afb6d447c94c59bd26d0a311913f
3
- size 144109
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47052bf14bd8c9fe90c128c4d24757ad633e24247d8fdcdf813c892c92f049da
3
+ size 147930
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.5.0
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data CHANGED
@@ -3,60 +3,35 @@
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7785a22830>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7785a228c0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7785a22950>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7785a229e0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f7785a22a70>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f7785a22b00>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7785a22b90>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f7785a22c20>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7785a22cb0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7785a22d40>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7785a22dd0>",
 
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f7785a66d50>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
- "observation_space": {
24
- ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
- "dtype": "float32",
27
- "_shape": [
28
- 8
29
- ],
30
- "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
- "high": "[inf inf inf inf inf inf inf inf]",
32
- "bounded_below": "[False False False False False False False False]",
33
- "bounded_above": "[False False False False False False False False]",
34
- "_np_random": null
35
- },
36
- "action_space": {
37
- ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
- ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
- "n": 4,
40
- "_shape": [],
41
- "dtype": "int64",
42
- "_np_random": null
43
- },
44
- "n_envs": 16,
45
- "num_timesteps": 524288,
46
- "_total_timesteps": 500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1651949954.059757,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
- "lr_schedule": {
54
- ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
- },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOCJVT7DFGg7k4VkunHcyLfY/R89xJyEOQAAgD8AAIA/gPMrvtxyN7z9Cv26TmPzuGmuoT3rlSA6AACAPwAAgD/e0bq+VVIQPtm0tD3+6ba9eB0ovs5Tor4AAAAAAAAAAJq21Dzh4IW60q8xuu8dg7Q2M6S6lbtMOQAAgD8AAIA/mhF9vB+9l7nMiQw6iVRUsx20mTouTSW5AACAPwAAgD8mID4+632VPdb3oTzRQAC+qEsePBOY+jwAAAAAAAAAACbbqD6mWoQ+Rv2YvQ6OIb74iAc9zuUWvAAAAAAAAAAAu06vvj+6Jj/nSwu+NDCgviYgZr5qBZo9AAAAAAAAAADNjzi+PUllu6H0GjZtckMzMHXxPGPVQrUAAIA/AACAPwA8x72ugZi6Oi/NOl6nojV7wA869jjtuQAAgD8AAIA/JqeOPY8CLLr8v0E6KyAxtJVdozvtQWG5AACAPwAAgD99aYI+rkHQO2Hyy70rcby9pma5vOlLjD0AAAAAAAAAAH3yZb5FT/o8Q2aSPTWyAjyYc6a+KB6/PQAAgD8AAIA/s/sWPfbcO7qUHUA85zu9tDZzUztpDaezAACAPwAAgD+7jKO+x7hHPxo/RL2Ey6++afq1vcOtdjwAAAAAAAAAADMj2DsflYC5rguNOd5RjbPLKTO7jhKnuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,29 +41,59 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.04857599999999995,
 
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ9MRwE3oYkCUhpRSlIwBbJRN6AOMAXSUR0CTt/V0tAcDdX2UKGgGaAloD0MINIRjlj1cYUCUhpRSlGgVTegDaBZHQJPBJwGW2PV1fZQoaAZoCWgPQwguqdpugiZcQJSGlFKUaBVN6ANoFkdAk8GngYP5HnV9lChoBmgJaA9DCFDfMqfLzFxAlIaUUpRoFU3oA2gWR0CTy7BDXvphdX2UKGgGaAloD0MIZ55cUyChYECUhpRSlGgVTegDaBZHQJPM3PD50r91fZQoaAZoCWgPQwiy9QzhmIdcQJSGlFKUaBVN6ANoFkdAk9dUzj3mFXV9lChoBmgJaA9DCOhqK/aXY1lAlIaUUpRoFU3oA2gWR0CT2F189fTkdX2UKGgGaAloD0MIY2Adxw/lE8CUhpRSlGgVTRwBaBZHQJPk2LUCq6x1fZQoaAZoCWgPQwjy7PKtDzZdQJSGlFKUaBVN6ANoFkdAk+dlXzUZvXV9lChoBmgJaA9DCCdnKO54319AlIaUUpRoFU3oA2gWR0CT6tHZ9NN8dX2UKGgGaAloD0MIRFGgT+TkX0CUhpRSlGgVTegDaBZHQJPq+kUKzAx1fZQoaAZoCWgPQwjObcK9MsheQJSGlFKUaBVN6ANoFkdAk+/g6ZH/cXV9lChoBmgJaA9DCLr5RnTP6V9AlIaUUpRoFU3oA2gWR0CT8upBomG/dX2UKGgGaAloD0MIPDJWm/8fX0CUhpRSlGgVTegDaBZHQJP4eE384xV1fZQoaAZoCWgPQwj6RnTPuq9owJSGlFKUaBVNRwJoFkdAk/r8ox59mnV9lChoBmgJaA9DCAMHtHQFpmJAlIaUUpRoFU3oA2gWR0CT/bHlOoHcdX2UKGgGaAloD0MIWn9LAP75JkCUhpRSlGgVTSIBaBZHQJQAKTX8O091fZQoaAZoCWgPQwgRcXMqGU5dQJSGlFKUaBVN6ANoFkdAlAINWyTpxHV9lChoBmgJaA9DCMoa9RAN62FAlIaUUpRoFU3oA2gWR0CUA/7yQPqcdX2UKGgGaAloD0MIgpAsYAJtU0CUhpRSlGgVTegDaBZHQJQHBreqJdl1fZQoaAZoCWgPQwiVKHtLOexcQJSGlFKUaBVN6ANoFkdAlA8z1K5CnnV9lChoBmgJaA9DCEZ9kjtsS1NAlIaUUpRoFU3oA2gWR0CUD6IHkcS5dX2UKGgGaAloD0MIjJ3wEpzKKkCUhpRSlGgVTSoBaBZHQJQZYvduYQd1fZQoaAZoCWgPQwjaWIl51gxgQJSGlFKUaBVN6ANoFkdAlCPoptrKvHV9lChoBmgJaA9DCFWKHY1D11dAlIaUUpRoFU3oA2gWR0CUJOMy8BdVdX2UKGgGaAloD0MItrsH6L6SX0CUhpRSlGgVTegDaBZHQJQwovmHP/t1fZQoaAZoCWgPQwh9sffii846wJSGlFKUaBVNMAFoFkdAlDIRSUC7snV9lChoBmgJaA9DCCe9b3ztXGVAlIaUUpRoFU18AmgWR0CUMooMKCxvdX2UKGgGaAloD0MIEYsYdhibSUCUhpRSlGgVTegDaBZHQJQy+XY150N1fZQoaAZoCWgPQwikjLgANNBeQJSGlFKUaBVN6ANoFkdAlDX8fFJg9nV9lChoBmgJaA9DCFsHB3sTg1xAlIaUUpRoFU3oA2gWR0CUOk3LV4HHdX2UKGgGaAloD0MIPX0E/nAeYUCUhpRSlGgVTegDaBZHQJTDyILw4Kh1fZQoaAZoCWgPQwjWHCCYo65aQJSGlFKUaBVN6ANoFkdAlMkcophF3XV9lChoBmgJaA9DCMKFPIKbDGFAlIaUUpRoFU3oA2gWR0CUy6w6QvHtdX2UKGgGaAloD0MIHERrRRuPYUCUhpRSlGgVTegDaBZHQJTOdArxy4p1fZQoaAZoCWgPQwhL5IIz+GZfQJSGlFKUaBVN6ANoFkdAlND2RRuTA3V9lChoBmgJaA9DCM7jMJg/DWBAlIaUUpRoFU3oA2gWR0CU2Ao8p1A8dX2UKGgGaAloD0MIEW4yqgzDKMCUhpRSlGgVTTYBaBZHQJTf3FwT/Q11fZQoaAZoCWgPQwjUCz7NSX1jQJSGlFKUaBVN6ANoFkdAlODqEnLJS3V9lChoBmgJaA9DCFn7O9ujNV9AlIaUUpRoFU3oA2gWR0CU4Vs+V1OkdX2UKGgGaAloD0MIG0gXm1ayWUCUhpRSlGgVTegDaBZHQJT1papxWDJ1fZQoaAZoCWgPQwjBx2DFqVxaQJSGlFKUaBVN6ANoFkdAlPawUcn3L3V9lChoBmgJaA9DCDMzMzMz9lRAlIaUUpRoFU3oA2gWR0CVAqZWq95AdX2UKGgGaAloD0MIbtxifu5rY0CUhpRSlGgVTegDaBZHQJUD/vPTodN1fZQoaAZoCWgPQwhIizOGOTNjQJSGlFKUaBVN6ANoFkdAlQRxMnJDE3V9lChoBmgJaA9DCCfChqdXRmVAlIaUUpRoFU3oA2gWR0CVBOgOSW7fdX2UKGgGaAloD0MIFTqvscuVYkCUhpRSlGgVTegDaBZHQJUIIMRYigV1fZQoaAZoCWgPQwgQeGAA4dVkQJSGlFKUaBVN6ANoFkdAlQzG5Yoy9HV9lChoBmgJaA9DCHLg1XLnXGFAlIaUUpRoFU3oA2gWR0CVD8U4JeE7dX2UKGgGaAloD0MIeAyP/SynXkCUhpRSlGgVTegDaBZHQJUX8aLn9vV1fZQoaAZoCWgPQwiQaW0a2/lcQJSGlFKUaBVN6ANoFkdAlRr9uP3i73V9lChoBmgJaA9DCINtxJPdm15AlIaUUpRoFU3oA2gWR0CVHc6CDmKZdX2UKGgGaAloD0MIUnx8QnY1YUCUhpRSlGgVTegDaBZHQJUmOilBQep1fZQoaAZoCWgPQwizKVd4l3xgQJSGlFKUaBVN6ANoFkdAlS8nrQgLZ3V9lChoBmgJaA9DCA7Y1eQpCFpAlIaUUpRoFU3oA2gWR0CVMGx0+1SgdX2UKGgGaAloD0MILjnulA7RYECUhpRSlGgVTegDaBZHQJUw5/FzdUN1fZQoaAZoCWgPQwigxVIkX4pdQJSGlFKUaBVN6ANoFkdAlUYUlRgqmXV9lChoBmgJaA9DCDY7Un1nTWFAlIaUUpRoFU3oA2gWR0CVRx3GGVRldX2UKGgGaAloD0MIG2X9ZmLTXkCUhpRSlGgVTegDaBZHQJVUFg6U7jl1fZQoaAZoCWgPQwgzjLtBtCJfQJSGlFKUaBVN6ANoFkdAlVWdgBtDUnV9lChoBmgJaA9DCJIGt7WF4VpAlIaUUpRoFU3oA2gWR0CVViLWI42kdX2UKGgGaAloD0MIrkm3JXJWWkCUhpRSlGgVTegDaBZHQJVWnZtelbh1fZQoaAZoCWgPQwhnDd5X5fVZQJSGlFKUaBVN6ANoFkdAlVng2uPmxXV9lChoBmgJaA9DCCkiwypeU2FAlIaUUpRoFU3oA2gWR0CVXqvIwM6SdX2UKGgGaAloD0MIBoAqblyaYkCUhpRSlGgVTegDaBZHQJVhjHZK3/h1fZQoaAZoCWgPQwgZxt0g2q1hQJSGlFKUaBVN6ANoFkdAlfAmNFSbY3V9lChoBmgJaA9DCCAkC5jAtV9AlIaUUpRoFU3oA2gWR0CV8zOLR8c/dX2UKGgGaAloD0MIUwjkEsesY0CUhpRSlGgVTegDaBZHQJX2Bnwob4t1fZQoaAZoCWgPQwjnN0w0yIpgQJSGlFKUaBVN6ANoFkdAlf3o1k1/D3V9lChoBmgJaA9DCDkPJzCdDW9AlIaUUpRoFU1QAWgWR0CWAeya/h2odX2UKGgGaAloD0MIQS5x5IFwQ0CUhpRSlGgVS/poFkdAlgPL5hz/63V9lChoBmgJaA9DCA0Zj1IJ72RAlIaUUpRoFU3oA2gWR0CWBbNIsiB5dX2UKGgGaAloD0MIwvhp3JtKYECUhpRSlGgVTegDaBZHQJYGtiWmgrZ1fZQoaAZoCWgPQwjpfk5Bfs5aQJSGlFKUaBVN6ANoFkdAlgceZPVNH3V9lChoBmgJaA9DCEvIBz0bimVAlIaUUpRoFU3oA2gWR0CWG2QNkOI7dX2UKGgGaAloD0MI+rmhKbvJYUCUhpRSlGgVTegDaBZHQJYchYGMXJp1fZQoaAZoCWgPQwg9fQT+8F5gQJSGlFKUaBVN6ANoFkdAlimXH3lCC3V9lChoBmgJaA9DCMv0S8RbgzVAlIaUUpRoFUuuaBZHQJYq8ao/A0t1fZQoaAZoCWgPQwjxoNl1b7hjQJSGlFKUaBVN6ANoFkdAlisMf3evZHV9lChoBmgJaA9DCCwRqP5B/l1AlIaUUpRoFU3oA2gWR0CWK4dupCKKdX2UKGgGaAloD0MIL4hITbtPXkCUhpRSlGgVTegDaBZHQJYr9okAxSJ1fZQoaAZoCWgPQwgmbarukWlVQJSGlFKUaBVN6ANoFkdAli8JZSvTw3V9lChoBmgJaA9DCMWqQZhbKmFAlIaUUpRoFU3oA2gWR0CWM2TG5tm+dX2UKGgGaAloD0MI5rD7juEHa0CUhpRSlGgVTUoCaBZHQJY1foq0+kh1fZQoaAZoCWgPQwiEg72JIQleQJSGlFKUaBVN6ANoFkdAlkE6ASWZ7XV9lChoBmgJaA9DCH3LnC4LDWRAlIaUUpRoFU3oA2gWR0CWRAqAz544dX2UKGgGaAloD0MIDCJS064ZbUCUhpRSlGgVTW8BaBZHQJZG35ftx+91fZQoaAZoCWgPQwiY3v5cNDJcQJSGlFKUaBVN6ANoFkdAlkukMPSUknV9lChoBmgJaA9DCNY2xeMim2RAlIaUUpRoFU3oA2gWR0CWT6557gKndX2UKGgGaAloD0MIeT9uv3zqW0CUhpRSlGgVTegDaBZHQJZRhJjDsMR1fZQoaAZoCWgPQwgsRIfAEXBiQJSGlFKUaBVN6ANoFkdAllNRg3Lmp3V9lChoBmgJaA9DCDy858ByEWFAlIaUUpRoFU3oA2gWR0CWVE0EX+ERdX2UKGgGaAloD0MI3Xu45DivZECUhpRSlGgVTegDaBZHQJZpv7gsK9h1fZQoaAZoCWgPQwhCd0mcFVFhQJSGlFKUaBVN6ANoFkdAlna+0b961XV9lChoBmgJaA9DCJCIKZFEfV1AlIaUUpRoFU3oA2gWR0CWeC2i+L3sdX2UKGgGaAloD0MIH0jeORTkYkCUhpRSlGgVTegDaBZHQJZ4SCJ40Mx1fZQoaAZoCWgPQwjzGyYapDpgQJSGlFKUaBVN6ANoFkdAlnjDUd7v5XV9lChoBmgJaA9DCBqk4CnkRWFAlIaUUpRoFU3oA2gWR0CWfHpMpPRBdX2UKGgGaAloD0MI9fI7TWb6XECUhpRSlGgVTegDaBZHQJaBM2eg+Ql1fZQoaAZoCWgPQwjxoNl1b6FiQJSGlFKUaBVN6ANoFkdAloNhzzVc2XVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 170,
79
- "n_steps": 2048,
80
- "gamma": 0.99,
81
- "gae_lambda": 0.95,
82
- "ent_coef": 0.0,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
86
- "n_epochs": 10,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
93
- "target_kl": null
 
 
 
 
94
  }
 
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e9ba9d41d80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e9ba9d41e10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e9ba9d41ea0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e9ba9d41f30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e9ba9d41fc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e9ba9d42050>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e9ba9d420e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e9ba9d42170>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e9ba9d42200>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e9ba9d42290>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e9ba9d42320>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e9ba9d423b0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e9ba9ee4700>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 16384,
25
+ "_total_timesteps": 100,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1720394542789201193,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
 
 
 
 
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACElrtATr0/m2PVvIZ+Hz5A0cK7msVfPAAAAAAAAAAAyF1Mv6xuHz9aDI+/iWyJv0NGcD4sAgW+AAAAAAAAAACzEkY9osWIPxfnMz7SgEe/wxl4PSC1RbwAAAAAAAAAADOYvD1sMgg/lGCDPqdpcb/vp6699qcOPgAAAAAAAAAAZperPAIqoD8VVOQ9HRMcv+8Pn757nWI9AAAAAAAAAAALLNy+B4o5P4uTFb+Rima/TfgRPf5mg7wAAAAAAAAAAEB7er4gIHs/ffw1v/kWZ79wa409ZdjQvQAAAAAAAAAAbaIPPtC9tz8o6hM/1UgNvpw7ab4iw2G+AAAAAAAAAABzBS8+sKWIPk/2tj6OHq2/f8K0vn/Krb4AAAAAAAAAAKvmyb5Q+KA/jcZUvzRNIb+DWMo+rQX8PQAAAAAAAAAAZlm1PgdlpD8d+iw/E99Pv0Rvvr4a6OE9AAAAAAAAAACQX96+JMCLvQliJr/ZnrW/ofRJPKCbPr0AAAAAAACAP+U4jb66s5Q/8swPvx0zR78J4gU/+qAFPQAAAAAAAAAAZooMPt50ij9BRww/CyY2v6Sla77kWpO+AAAAAAAAAAC9SHu+sMXXPqIQ6L5KaZS/cdDtPT4CmL0AAAAAAAAAAGaGAj3zQ7g/6JNkPrlkT7yRX9G9FTU6vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -162.84,
45
+ "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGly6KDTSb+MAWyUS02MAXSUR0CJg0lHBk7PdX2UKGgGR8BYVGS2Yv38aAdLRmgIR0CJg7dMTN+tdX2UKGgGR8BrqnXGwRoRaAdLW2gIR0CJg/vcafjCdX2UKGgGR8Bwyom/nGKiaAdLW2gIR0CJhDG/etSydX2UKGgGR8B2fVkOI68yaAdLgWgIR0CJhEVymygPdX2UKGgGR8BrByMPz4DcaAdLR2gIR0CJhJKTSsr/dX2UKGgGR8Becw+pwS8KaAdLaGgIR0CJhPxOLzf8dX2UKGgGR8BLZ0yP+4smaAdLPmgIR0CJhSe1a4c4dX2UKGgGR8BpkYc94eLfaAdLb2gIR0CJhTuCwr1/dX2UKGgGR8BtgcRlHz6KaAdLUWgIR0CJhVdWyTpxdX2UKGgGR8Bcsmukk8ifaAdLUmgIR0CJhY4RVZLadX2UKGgGR8BUqz06HTJAaAdLTmgIR0CJhbHS4OMEdX2UKGgGR8BhaJzBAOawaAdLVmgIR0CJha+u/1xsdX2UKGgGR8BbxcnRb8m8aAdLlGgIR0CJha9tdiUgdX2UKGgGR8BTA21IAfdRaAdLRWgIR0CJhdQHAymAdX2UKGgGR8BuJHd9Dx9YaAdLUmgIR0CJhdACW/rTdX2UKGgGR8B05Nb9qDbraAdLXGgIR0CJheTcqOLjdX2UKGgGR8B16MIJJGvwaAdLgWgIR0CJhiUqx1PndX2UKGgGR8BTOXv+fh/BaAdLXGgIR0CJhsBbwBo3dX2UKGgGR8BayCDdxhlUaAdLS2gIR0CJhtIwudwvdX2UKGgGR8BzHFVbRne0aAdLXWgIR0CJhyQmNR3vdX2UKGgGR8BZg+3H7xd6aAdLPWgIR0CJhzpQk5ZKdX2UKGgGR8BUaWQKa5PNaAdLPGgIR0CJh6tpVS4wdX2UKGgGR8AxVYeT3Zf2aAdLV2gIR0CJh+rR0EHMdX2UKGgGR8BkokriEQGwaAdLTGgIR0CJh+k3S8aodX2UKGgGR8BgpV6eGwiaaAdLTWgIR0CJiA5byH2zdX2UKGgGR8ByqwHlfZ27aAdLY2gIR0CJiDoi9qUNdX2UKGgGR8BgP8zQ/oq1aAdLhWgIR0CJiEw35vcadX2UKGgGR8BzDUH3UQTVaAdLUmgIR0CJiFeLvTgEdX2UKGgGR8BoVnPw/gR9aAdLTmgIR0CJiJHQyAQQdX2UKGgGR8BeB8HbAUL2aAdLP2gIR0CJiNNliBoVdX2UKGgGR8BxuV7OVxCIaAdLaWgIR0CJiOxVyWAxdX2UKGgGR8BwU/vQWvbHaAdLf2gIR0CJiOjTrmhedX2UKGgGR8BVtYRAbADaaAdLPWgIR0CJiQQ5FPSEdX2UKGgGR8BvkDq+rU9ZaAdLcmgIR0CJiSsYEW69dX2UKGgGR8BZi57sv7FbaAdLamgIR0CJiSUrTYukdX2UKGgGR8BXL7ELpiZwaAdLO2gIR0CJiaT+vQnhdX2UKGgGR8Bhdk+7lJYlaAdLQ2gIR0CJigUhV2iddX2UKGgGR8BxHzhddE9daAdLXWgIR0CJif+qioKldX2UKGgGR8BojHZTQ3PzaAdLUWgIR0CJihVNHpbEdX2UKGgGR8BaDiFXaJyiaAdLSGgIR0CJinCxeLNwdX2UKGgGR8Bgs2zY287IaAdLemgIR0CJinmukk8idX2UKGgGR8BQ0ffKp1ifaAdLPGgIR0CJiuHB1s+FdX2UKGgGR8BqeRtzjm0WaAdLX2gIR0CJiwc2itaIdX2UKGgGR8BzS14NZvDQaAdLUmgIR0CJi3GaQV9GdX2UKGgGR8BoHGTibUgCaAdLeGgIR0CJi4RmK64EdX2UKGgGR8BkeD2WY4Q0aAdLdmgIR0CJi9GJemeldX2UKGgGR8B6tO79Q40eaAdLYmgIR0CJi9P420iRdX2UKGgGR8B4qXAoG6f8aAdLZWgIR0CJi/BE8aGYdX2UKGgGR8A2ZVsDW9UTaAdLPWgIR0CJi/KcNH6NdX2UKGgGR8BZKLONYKYzaAdLRmgIR0CJjCgvDgqFdX2UKGgGR8BmbG6PKdQPaAdLb2gIR0CJjCSKWLP2dX2UKGgGR8B2zInqmj0uaAdLWGgIR0CJjE6DGtITdX2UKGgGR8BiALkn1FpgaAdLN2gIR0CJjI66reZYdX2UKGgGR8BnleqFRHf/aAdLd2gIR0CJjLOX3QD3dX2UKGgGR8Bz4TJOnEVGaAdLjWgIR0CJjML6UJOWdX2UKGgGR8BbDebqhUR4aAdLTWgIR0CJjMxesxO+dX2UKGgGR8BtMYd2gWadaAdLeGgIR0CJjZKYiPhidX2UKGgGR8BvrG+K0lZ6aAdLYWgIR0CJjff7aZhKdX2UKGgGR8BiuBeJHiFTaAdLd2gIR0CJjg1gH/tIdX2UKGgGR8Bah52U0Nz9aAdLX2gIR0CJjk7tiQT3dX2UKGgGR8B02odaMaS+aAdLV2gIR0CJjnJlJ6IFdX2UKGgGR8BY5Ue6qbSaaAdLXWgIR0CJjr4k/r0KdX2UKGgGR8B34qg00m+kaAdLYWgIR0CJjt/IbOu8dX2UKGgGR8BilnLLZBcBaAdLZ2gIR0CJjvIhhYvGdX2UKGgGR8Blhnv0AcT8aAdLUmgIR0CJj14zrNW3dX2UKGgGR8BqTFUfgaWHaAdLgGgIR0CJj3vw3HaOdX2UKGgGR8Bc0h/I8yN5aAdLamgIR0CJj6VUMoc8dX2UKGgGR8Bq8c4HX2/SaAdLX2gIR0CJj7oIv8IidX2UKGgGR8ByVTdznzQNaAdLeGgIR0CJj+T8HfMwdX2UKGgGR8CAdFrKNhmYaAdLemgIR0CJj/nOB19wdX2UKGgGR8BhCKUTtb9qaAdLcGgIR0CJkBSiudPMdX2UKGgGR8BT5tmYjSogaAdLRGgIR0CJkHcWTHKfdX2UKGgGR8Bdcqdtl7MQaAdLd2gIR0CJkIRq46OpdX2UKGgGR8BnR/sHB1s+aAdLRGgIR0CJkJk92X9jdX2UKGgGR8B6X9xS5y2haAdLVWgIR0CJkKbRWtEHdX2UKGgGR8BcrXEETxoaaAdLZmgIR0CJkNAYYR/WdX2UKGgGR8BWuIlY2bXpaAdLRGgIR0CJkRuTibUgdX2UKGgGR8B3RquEEkjYaAdLUGgIR0CJkUj1PFefdX2UKGgGR8BdALYkE9t/aAdLZ2gIR0CJkU3H7xd6dX2UKGgGR8BUz6qGUOd5aAdLQWgIR0CJkXbiZOSGdX2UKGgGR8BlY+w7kn1GaAdLQmgIR0CJkbJmNBGAdX2UKGgGR8AtAE/0NBnjaAdLQWgIR0CJkgX531SPdX2UKGgGR8BZDpDNQj2SaAdLUGgIR0CJkkcYIjW1dX2UKGgGR8B2yXk0aZQYaAdLYmgIR0CJkuznA6+4dX2UKGgGR8Bak7UTcqOMaAdLTGgIR0CJky5ZKWcCdX2UKGgGR8BWVcoUi6g/aAdLQ2gIR0CJk1uHerMldX2UKGgGR8BV8NCqp97XaAdLemgIR0CJk2i0v4/NdX2UKGgGR8BVfCYsunMuaAdLlGgIR0CJk41l5GBndX2UKGgGR8CAWXeN1hb4aAdLX2gIR0CJk4PHT7VKdX2UKGgGR8ByCMNCqp97aAdLZGgIR0CJk516mfoSdX2UKGgGR8BiKBGFzuF6aAdLRWgIR0CJk6m1pj+adX2UKGgGR8BrqRujynUEaAdLjGgIR0CJk7zwMH8kdX2UKGgGR8BXbHpfQa73aAdLZGgIR0CJk9EfDDTCdX2UKGgGR8Bx/jd0q6OHaAdLTmgIR0CJlH7laKUFdX2UKGgGR8BqklGwzLwGaAdLbGgIR0CJlKosI3R5dX2UKGgGR8B20X4IrvsraAdLYWgIR0CJlMCEHt4SdX2UKGgGR0AscDW9US7HaAdLdGgIR0CJlLlo11nvdX2UKGgGR8B6/leOXE61aAdLjmgIR0CJlQg/1QIldX2UKGgGR8BRAFNQCSzPaAdLPGgIR0CJlTp3X7LudWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 4,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:96cf681a4efd8b655b176a81789e557a004358fb01e53739ac143995b506fdc0
3
- size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:450d634d7b0d96491679f4f51edd6772d9f0f399adf30860513f90c6eb79b7d5
3
+ size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9b3957d84c62faf01e5e674981511c569850f82c0b354ad8a20155ff15dd5647
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:baeebc957d26626075bc201b940023288334d806765ffe66d88bca2a711c0de0
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
- size 431
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,9 @@
1
- OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
- Python: 3.7.13
3
- Stable-Baselines3: 1.5.0
4
- PyTorch: 1.11.0+cu113
5
- GPU Enabled: True
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c54818bde5653598fd28dfd3fa7dfcd75a993e20e28cf96f8c86f1101ada2fb9
3
- size 247547
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b594d7bc8c6809bd9b770d1174d1e80ca25302bf03df19b9330bce9f95282d61
3
+ size 123248
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 226.8118941975571, "std_reward": 11.751475128151476, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T19:33:54.108217"}
 
1
+ {"mean_reward": -899.1273429999999, "std_reward": 385.36775195096, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-07T23:51:41.995200"}