model from RL course by HF
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: MlpPolicy
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 226.81 +/- 11.75
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **MlpPolicy** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7785a22830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7785a228c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7785a22950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7785a229e0>", "_build": "<function ActorCriticPolicy._build at 0x7f7785a22a70>", "forward": "<function ActorCriticPolicy.forward at 0x7f7785a22b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7785a22b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7785a22c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7785a22cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7785a22d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7785a22dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7785a66d50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651949954.059757, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOCJVT7DFGg7k4VkunHcyLfY/R89xJyEOQAAgD8AAIA/gPMrvtxyN7z9Cv26TmPzuGmuoT3rlSA6AACAPwAAgD/e0bq+VVIQPtm0tD3+6ba9eB0ovs5Tor4AAAAAAAAAAJq21Dzh4IW60q8xuu8dg7Q2M6S6lbtMOQAAgD8AAIA/mhF9vB+9l7nMiQw6iVRUsx20mTouTSW5AACAPwAAgD8mID4+632VPdb3oTzRQAC+qEsePBOY+jwAAAAAAAAAACbbqD6mWoQ+Rv2YvQ6OIb74iAc9zuUWvAAAAAAAAAAAu06vvj+6Jj/nSwu+NDCgviYgZr5qBZo9AAAAAAAAAADNjzi+PUllu6H0GjZtckMzMHXxPGPVQrUAAIA/AACAPwA8x72ugZi6Oi/NOl6nojV7wA869jjtuQAAgD8AAIA/JqeOPY8CLLr8v0E6KyAxtJVdozvtQWG5AACAPwAAgD99aYI+rkHQO2Hyy70rcby9pma5vOlLjD0AAAAAAAAAAH3yZb5FT/o8Q2aSPTWyAjyYc6a+KB6/PQAAgD8AAIA/s/sWPfbcO7qUHUA85zu9tDZzUztpDaezAACAPwAAgD+7jKO+x7hHPxo/RL2Ey6++afq1vcOtdjwAAAAAAAAAADMj2DsflYC5rguNOd5RjbPLKTO7jhKnuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ9MRwE3oYkCUhpRSlIwBbJRN6AOMAXSUR0CTt/V0tAcDdX2UKGgGaAloD0MINIRjlj1cYUCUhpRSlGgVTegDaBZHQJPBJwGW2PV1fZQoaAZoCWgPQwguqdpugiZcQJSGlFKUaBVN6ANoFkdAk8GngYP5HnV9lChoBmgJaA9DCFDfMqfLzFxAlIaUUpRoFU3oA2gWR0CTy7BDXvphdX2UKGgGaAloD0MIZ55cUyChYECUhpRSlGgVTegDaBZHQJPM3PD50r91fZQoaAZoCWgPQwiy9QzhmIdcQJSGlFKUaBVN6ANoFkdAk9dUzj3mFXV9lChoBmgJaA9DCOhqK/aXY1lAlIaUUpRoFU3oA2gWR0CT2F189fTkdX2UKGgGaAloD0MIY2Adxw/lE8CUhpRSlGgVTRwBaBZHQJPk2LUCq6x1fZQoaAZoCWgPQwjy7PKtDzZdQJSGlFKUaBVN6ANoFkdAk+dlXzUZvXV9lChoBmgJaA9DCCdnKO54319AlIaUUpRoFU3oA2gWR0CT6tHZ9NN8dX2UKGgGaAloD0MIRFGgT+TkX0CUhpRSlGgVTegDaBZHQJPq+kUKzAx1fZQoaAZoCWgPQwjObcK9MsheQJSGlFKUaBVN6ANoFkdAk+/g6ZH/cXV9lChoBmgJaA9DCLr5RnTP6V9AlIaUUpRoFU3oA2gWR0CT8upBomG/dX2UKGgGaAloD0MIPDJWm/8fX0CUhpRSlGgVTegDaBZHQJP4eE384xV1fZQoaAZoCWgPQwj6RnTPuq9owJSGlFKUaBVNRwJoFkdAk/r8ox59mnV9lChoBmgJaA9DCAMHtHQFpmJAlIaUUpRoFU3oA2gWR0CT/bHlOoHcdX2UKGgGaAloD0MIWn9LAP75JkCUhpRSlGgVTSIBaBZHQJQAKTX8O091fZQoaAZoCWgPQwgRcXMqGU5dQJSGlFKUaBVN6ANoFkdAlAINWyTpxHV9lChoBmgJaA9DCMoa9RAN62FAlIaUUpRoFU3oA2gWR0CUA/7yQPqcdX2UKGgGaAloD0MIgpAsYAJtU0CUhpRSlGgVTegDaBZHQJQHBreqJdl1fZQoaAZoCWgPQwiVKHtLOexcQJSGlFKUaBVN6ANoFkdAlA8z1K5CnnV9lChoBmgJaA9DCEZ9kjtsS1NAlIaUUpRoFU3oA2gWR0CUD6IHkcS5dX2UKGgGaAloD0MIjJ3wEpzKKkCUhpRSlGgVTSoBaBZHQJQZYvduYQd1fZQoaAZoCWgPQwjaWIl51gxgQJSGlFKUaBVN6ANoFkdAlCPoptrKvHV9lChoBmgJaA9DCFWKHY1D11dAlIaUUpRoFU3oA2gWR0CUJOMy8BdVdX2UKGgGaAloD0MItrsH6L6SX0CUhpRSlGgVTegDaBZHQJQwovmHP/t1fZQoaAZoCWgPQwh9sffii846wJSGlFKUaBVNMAFoFkdAlDIRSUC7snV9lChoBmgJaA9DCCe9b3ztXGVAlIaUUpRoFU18AmgWR0CUMooMKCxvdX2UKGgGaAloD0MIEYsYdhibSUCUhpRSlGgVTegDaBZHQJQy+XY150N1fZQoaAZoCWgPQwikjLgANNBeQJSGlFKUaBVN6ANoFkdAlDX8fFJg9nV9lChoBmgJaA9DCFsHB3sTg1xAlIaUUpRoFU3oA2gWR0CUOk3LV4HHdX2UKGgGaAloD0MIPX0E/nAeYUCUhpRSlGgVTegDaBZHQJTDyILw4Kh1fZQoaAZoCWgPQwjWHCCYo65aQJSGlFKUaBVN6ANoFkdAlMkcophF3XV9lChoBmgJaA9DCMKFPIKbDGFAlIaUUpRoFU3oA2gWR0CUy6w6QvHtdX2UKGgGaAloD0MIHERrRRuPYUCUhpRSlGgVTegDaBZHQJTOdArxy4p1fZQoaAZoCWgPQwhL5IIz+GZfQJSGlFKUaBVN6ANoFkdAlND2RRuTA3V9lChoBmgJaA9DCM7jMJg/DWBAlIaUUpRoFU3oA2gWR0CU2Ao8p1A8dX2UKGgGaAloD0MIEW4yqgzDKMCUhpRSlGgVTTYBaBZHQJTf3FwT/Q11fZQoaAZoCWgPQwjUCz7NSX1jQJSGlFKUaBVN6ANoFkdAlODqEnLJS3V9lChoBmgJaA9DCFn7O9ujNV9AlIaUUpRoFU3oA2gWR0CU4Vs+V1OkdX2UKGgGaAloD0MIG0gXm1ayWUCUhpRSlGgVTegDaBZHQJT1papxWDJ1fZQoaAZoCWgPQwjBx2DFqVxaQJSGlFKUaBVN6ANoFkdAlPawUcn3L3V9lChoBmgJaA9DCDMzMzMz9lRAlIaUUpRoFU3oA2gWR0CVAqZWq95AdX2UKGgGaAloD0MIbtxifu5rY0CUhpRSlGgVTegDaBZHQJUD/vPTodN1fZQoaAZoCWgPQwhIizOGOTNjQJSGlFKUaBVN6ANoFkdAlQRxMnJDE3V9lChoBmgJaA9DCCfChqdXRmVAlIaUUpRoFU3oA2gWR0CVBOgOSW7fdX2UKGgGaAloD0MIFTqvscuVYkCUhpRSlGgVTegDaBZHQJUIIMRYigV1fZQoaAZoCWgPQwgQeGAA4dVkQJSGlFKUaBVN6ANoFkdAlQzG5Yoy9HV9lChoBmgJaA9DCHLg1XLnXGFAlIaUUpRoFU3oA2gWR0CVD8U4JeE7dX2UKGgGaAloD0MIeAyP/SynXkCUhpRSlGgVTegDaBZHQJUX8aLn9vV1fZQoaAZoCWgPQwiQaW0a2/lcQJSGlFKUaBVN6ANoFkdAlRr9uP3i73V9lChoBmgJaA9DCINtxJPdm15AlIaUUpRoFU3oA2gWR0CVHc6CDmKZdX2UKGgGaAloD0MIUnx8QnY1YUCUhpRSlGgVTegDaBZHQJUmOilBQep1fZQoaAZoCWgPQwizKVd4l3xgQJSGlFKUaBVN6ANoFkdAlS8nrQgLZ3V9lChoBmgJaA9DCA7Y1eQpCFpAlIaUUpRoFU3oA2gWR0CVMGx0+1SgdX2UKGgGaAloD0MILjnulA7RYECUhpRSlGgVTegDaBZHQJUw5/FzdUN1fZQoaAZoCWgPQwigxVIkX4pdQJSGlFKUaBVN6ANoFkdAlUYUlRgqmXV9lChoBmgJaA9DCDY7Un1nTWFAlIaUUpRoFU3oA2gWR0CVRx3GGVRldX2UKGgGaAloD0MIG2X9ZmLTXkCUhpRSlGgVTegDaBZHQJVUFg6U7jl1fZQoaAZoCWgPQwgzjLtBtCJfQJSGlFKUaBVN6ANoFkdAlVWdgBtDUnV9lChoBmgJaA9DCJIGt7WF4VpAlIaUUpRoFU3oA2gWR0CVViLWI42kdX2UKGgGaAloD0MIrkm3JXJWWkCUhpRSlGgVTegDaBZHQJVWnZtelbh1fZQoaAZoCWgPQwhnDd5X5fVZQJSGlFKUaBVN6ANoFkdAlVng2uPmxXV9lChoBmgJaA9DCCkiwypeU2FAlIaUUpRoFU3oA2gWR0CVXqvIwM6SdX2UKGgGaAloD0MIBoAqblyaYkCUhpRSlGgVTegDaBZHQJVhjHZK3/h1fZQoaAZoCWgPQwgZxt0g2q1hQJSGlFKUaBVN6ANoFkdAlfAmNFSbY3V9lChoBmgJaA9DCCAkC5jAtV9AlIaUUpRoFU3oA2gWR0CV8zOLR8c/dX2UKGgGaAloD0MIUwjkEsesY0CUhpRSlGgVTegDaBZHQJX2Bnwob4t1fZQoaAZoCWgPQwjnN0w0yIpgQJSGlFKUaBVN6ANoFkdAlf3o1k1/D3V9lChoBmgJaA9DCDkPJzCdDW9AlIaUUpRoFU1QAWgWR0CWAeya/h2odX2UKGgGaAloD0MIQS5x5IFwQ0CUhpRSlGgVS/poFkdAlgPL5hz/63V9lChoBmgJaA9DCA0Zj1IJ72RAlIaUUpRoFU3oA2gWR0CWBbNIsiB5dX2UKGgGaAloD0MIwvhp3JtKYECUhpRSlGgVTegDaBZHQJYGtiWmgrZ1fZQoaAZoCWgPQwjpfk5Bfs5aQJSGlFKUaBVN6ANoFkdAlgceZPVNH3V9lChoBmgJaA9DCEvIBz0bimVAlIaUUpRoFU3oA2gWR0CWG2QNkOI7dX2UKGgGaAloD0MI+rmhKbvJYUCUhpRSlGgVTegDaBZHQJYchYGMXJp1fZQoaAZoCWgPQwg9fQT+8F5gQJSGlFKUaBVN6ANoFkdAlimXH3lCC3V9lChoBmgJaA9DCMv0S8RbgzVAlIaUUpRoFUuuaBZHQJYq8ao/A0t1fZQoaAZoCWgPQwjxoNl1b7hjQJSGlFKUaBVN6ANoFkdAlisMf3evZHV9lChoBmgJaA9DCCwRqP5B/l1AlIaUUpRoFU3oA2gWR0CWK4dupCKKdX2UKGgGaAloD0MIL4hITbtPXkCUhpRSlGgVTegDaBZHQJYr9okAxSJ1fZQoaAZoCWgPQwgmbarukWlVQJSGlFKUaBVN6ANoFkdAli8JZSvTw3V9lChoBmgJaA9DCMWqQZhbKmFAlIaUUpRoFU3oA2gWR0CWM2TG5tm+dX2UKGgGaAloD0MI5rD7juEHa0CUhpRSlGgVTUoCaBZHQJY1foq0+kh1fZQoaAZoCWgPQwiEg72JIQleQJSGlFKUaBVN6ANoFkdAlkE6ASWZ7XV9lChoBmgJaA9DCH3LnC4LDWRAlIaUUpRoFU3oA2gWR0CWRAqAz544dX2UKGgGaAloD0MIDCJS064ZbUCUhpRSlGgVTW8BaBZHQJZG35ftx+91fZQoaAZoCWgPQwiY3v5cNDJcQJSGlFKUaBVN6ANoFkdAlkukMPSUknV9lChoBmgJaA9DCNY2xeMim2RAlIaUUpRoFU3oA2gWR0CWT6557gKndX2UKGgGaAloD0MIeT9uv3zqW0CUhpRSlGgVTegDaBZHQJZRhJjDsMR1fZQoaAZoCWgPQwgsRIfAEXBiQJSGlFKUaBVN6ANoFkdAllNRg3Lmp3V9lChoBmgJaA9DCDy858ByEWFAlIaUUpRoFU3oA2gWR0CWVE0EX+ERdX2UKGgGaAloD0MI3Xu45DivZECUhpRSlGgVTegDaBZHQJZpv7gsK9h1fZQoaAZoCWgPQwhCd0mcFVFhQJSGlFKUaBVN6ANoFkdAlna+0b961XV9lChoBmgJaA9DCJCIKZFEfV1AlIaUUpRoFU3oA2gWR0CWeC2i+L3sdX2UKGgGaAloD0MIH0jeORTkYkCUhpRSlGgVTegDaBZHQJZ4SCJ40Mx1fZQoaAZoCWgPQwjzGyYapDpgQJSGlFKUaBVN6ANoFkdAlnjDUd7v5XV9lChoBmgJaA9DCBqk4CnkRWFAlIaUUpRoFU3oA2gWR0CWfHpMpPRBdX2UKGgGaAloD0MI9fI7TWb6XECUhpRSlGgVTegDaBZHQJaBM2eg+Ql1fZQoaAZoCWgPQwjxoNl1b6FiQJSGlFKUaBVN6ANoFkdAloNhzzVc2XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 170, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c6be37da20413e3090d453eaecb88c17060afb6d447c94c59bd26d0a311913f
|
3 |
+
size 144109
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7785a22830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7785a228c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7785a22950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7785a229e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7785a22a70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7785a22b00>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7785a22b90>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7785a22c20>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7785a22cb0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7785a22d40>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7785a22dd0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7785a66d50>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651949954.059757,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOCJVT7DFGg7k4VkunHcyLfY/R89xJyEOQAAgD8AAIA/gPMrvtxyN7z9Cv26TmPzuGmuoT3rlSA6AACAPwAAgD/e0bq+VVIQPtm0tD3+6ba9eB0ovs5Tor4AAAAAAAAAAJq21Dzh4IW60q8xuu8dg7Q2M6S6lbtMOQAAgD8AAIA/mhF9vB+9l7nMiQw6iVRUsx20mTouTSW5AACAPwAAgD8mID4+632VPdb3oTzRQAC+qEsePBOY+jwAAAAAAAAAACbbqD6mWoQ+Rv2YvQ6OIb74iAc9zuUWvAAAAAAAAAAAu06vvj+6Jj/nSwu+NDCgviYgZr5qBZo9AAAAAAAAAADNjzi+PUllu6H0GjZtckMzMHXxPGPVQrUAAIA/AACAPwA8x72ugZi6Oi/NOl6nojV7wA869jjtuQAAgD8AAIA/JqeOPY8CLLr8v0E6KyAxtJVdozvtQWG5AACAPwAAgD99aYI+rkHQO2Hyy70rcby9pma5vOlLjD0AAAAAAAAAAH3yZb5FT/o8Q2aSPTWyAjyYc6a+KB6/PQAAgD8AAIA/s/sWPfbcO7qUHUA85zu9tDZzUztpDaezAACAPwAAgD+7jKO+x7hHPxo/RL2Ey6++afq1vcOtdjwAAAAAAAAAADMj2DsflYC5rguNOd5RjbPLKTO7jhKnuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ9MRwE3oYkCUhpRSlIwBbJRN6AOMAXSUR0CTt/V0tAcDdX2UKGgGaAloD0MINIRjlj1cYUCUhpRSlGgVTegDaBZHQJPBJwGW2PV1fZQoaAZoCWgPQwguqdpugiZcQJSGlFKUaBVN6ANoFkdAk8GngYP5HnV9lChoBmgJaA9DCFDfMqfLzFxAlIaUUpRoFU3oA2gWR0CTy7BDXvphdX2UKGgGaAloD0MIZ55cUyChYECUhpRSlGgVTegDaBZHQJPM3PD50r91fZQoaAZoCWgPQwiy9QzhmIdcQJSGlFKUaBVN6ANoFkdAk9dUzj3mFXV9lChoBmgJaA9DCOhqK/aXY1lAlIaUUpRoFU3oA2gWR0CT2F189fTkdX2UKGgGaAloD0MIY2Adxw/lE8CUhpRSlGgVTRwBaBZHQJPk2LUCq6x1fZQoaAZoCWgPQwjy7PKtDzZdQJSGlFKUaBVN6ANoFkdAk+dlXzUZvXV9lChoBmgJaA9DCCdnKO54319AlIaUUpRoFU3oA2gWR0CT6tHZ9NN8dX2UKGgGaAloD0MIRFGgT+TkX0CUhpRSlGgVTegDaBZHQJPq+kUKzAx1fZQoaAZoCWgPQwjObcK9MsheQJSGlFKUaBVN6ANoFkdAk+/g6ZH/cXV9lChoBmgJaA9DCLr5RnTP6V9AlIaUUpRoFU3oA2gWR0CT8upBomG/dX2UKGgGaAloD0MIPDJWm/8fX0CUhpRSlGgVTegDaBZHQJP4eE384xV1fZQoaAZoCWgPQwj6RnTPuq9owJSGlFKUaBVNRwJoFkdAk/r8ox59mnV9lChoBmgJaA9DCAMHtHQFpmJAlIaUUpRoFU3oA2gWR0CT/bHlOoHcdX2UKGgGaAloD0MIWn9LAP75JkCUhpRSlGgVTSIBaBZHQJQAKTX8O091fZQoaAZoCWgPQwgRcXMqGU5dQJSGlFKUaBVN6ANoFkdAlAINWyTpxHV9lChoBmgJaA9DCMoa9RAN62FAlIaUUpRoFU3oA2gWR0CUA/7yQPqcdX2UKGgGaAloD0MIgpAsYAJtU0CUhpRSlGgVTegDaBZHQJQHBreqJdl1fZQoaAZoCWgPQwiVKHtLOexcQJSGlFKUaBVN6ANoFkdAlA8z1K5CnnV9lChoBmgJaA9DCEZ9kjtsS1NAlIaUUpRoFU3oA2gWR0CUD6IHkcS5dX2UKGgGaAloD0MIjJ3wEpzKKkCUhpRSlGgVTSoBaBZHQJQZYvduYQd1fZQoaAZoCWgPQwjaWIl51gxgQJSGlFKUaBVN6ANoFkdAlCPoptrKvHV9lChoBmgJaA9DCFWKHY1D11dAlIaUUpRoFU3oA2gWR0CUJOMy8BdVdX2UKGgGaAloD0MItrsH6L6SX0CUhpRSlGgVTegDaBZHQJQwovmHP/t1fZQoaAZoCWgPQwh9sffii846wJSGlFKUaBVNMAFoFkdAlDIRSUC7snV9lChoBmgJaA9DCCe9b3ztXGVAlIaUUpRoFU18AmgWR0CUMooMKCxvdX2UKGgGaAloD0MIEYsYdhibSUCUhpRSlGgVTegDaBZHQJQy+XY150N1fZQoaAZoCWgPQwikjLgANNBeQJSGlFKUaBVN6ANoFkdAlDX8fFJg9nV9lChoBmgJaA9DCFsHB3sTg1xAlIaUUpRoFU3oA2gWR0CUOk3LV4HHdX2UKGgGaAloD0MIPX0E/nAeYUCUhpRSlGgVTegDaBZHQJTDyILw4Kh1fZQoaAZoCWgPQwjWHCCYo65aQJSGlFKUaBVN6ANoFkdAlMkcophF3XV9lChoBmgJaA9DCMKFPIKbDGFAlIaUUpRoFU3oA2gWR0CUy6w6QvHtdX2UKGgGaAloD0MIHERrRRuPYUCUhpRSlGgVTegDaBZHQJTOdArxy4p1fZQoaAZoCWgPQwhL5IIz+GZfQJSGlFKUaBVN6ANoFkdAlND2RRuTA3V9lChoBmgJaA9DCM7jMJg/DWBAlIaUUpRoFU3oA2gWR0CU2Ao8p1A8dX2UKGgGaAloD0MIEW4yqgzDKMCUhpRSlGgVTTYBaBZHQJTf3FwT/Q11fZQoaAZoCWgPQwjUCz7NSX1jQJSGlFKUaBVN6ANoFkdAlODqEnLJS3V9lChoBmgJaA9DCFn7O9ujNV9AlIaUUpRoFU3oA2gWR0CU4Vs+V1OkdX2UKGgGaAloD0MIG0gXm1ayWUCUhpRSlGgVTegDaBZHQJT1papxWDJ1fZQoaAZoCWgPQwjBx2DFqVxaQJSGlFKUaBVN6ANoFkdAlPawUcn3L3V9lChoBmgJaA9DCDMzMzMz9lRAlIaUUpRoFU3oA2gWR0CVAqZWq95AdX2UKGgGaAloD0MIbtxifu5rY0CUhpRSlGgVTegDaBZHQJUD/vPTodN1fZQoaAZoCWgPQwhIizOGOTNjQJSGlFKUaBVN6ANoFkdAlQRxMnJDE3V9lChoBmgJaA9DCCfChqdXRmVAlIaUUpRoFU3oA2gWR0CVBOgOSW7fdX2UKGgGaAloD0MIFTqvscuVYkCUhpRSlGgVTegDaBZHQJUIIMRYigV1fZQoaAZoCWgPQwgQeGAA4dVkQJSGlFKUaBVN6ANoFkdAlQzG5Yoy9HV9lChoBmgJaA9DCHLg1XLnXGFAlIaUUpRoFU3oA2gWR0CVD8U4JeE7dX2UKGgGaAloD0MIeAyP/SynXkCUhpRSlGgVTegDaBZHQJUX8aLn9vV1fZQoaAZoCWgPQwiQaW0a2/lcQJSGlFKUaBVN6ANoFkdAlRr9uP3i73V9lChoBmgJaA9DCINtxJPdm15AlIaUUpRoFU3oA2gWR0CVHc6CDmKZdX2UKGgGaAloD0MIUnx8QnY1YUCUhpRSlGgVTegDaBZHQJUmOilBQep1fZQoaAZoCWgPQwizKVd4l3xgQJSGlFKUaBVN6ANoFkdAlS8nrQgLZ3V9lChoBmgJaA9DCA7Y1eQpCFpAlIaUUpRoFU3oA2gWR0CVMGx0+1SgdX2UKGgGaAloD0MILjnulA7RYECUhpRSlGgVTegDaBZHQJUw5/FzdUN1fZQoaAZoCWgPQwigxVIkX4pdQJSGlFKUaBVN6ANoFkdAlUYUlRgqmXV9lChoBmgJaA9DCDY7Un1nTWFAlIaUUpRoFU3oA2gWR0CVRx3GGVRldX2UKGgGaAloD0MIG2X9ZmLTXkCUhpRSlGgVTegDaBZHQJVUFg6U7jl1fZQoaAZoCWgPQwgzjLtBtCJfQJSGlFKUaBVN6ANoFkdAlVWdgBtDUnV9lChoBmgJaA9DCJIGt7WF4VpAlIaUUpRoFU3oA2gWR0CVViLWI42kdX2UKGgGaAloD0MIrkm3JXJWWkCUhpRSlGgVTegDaBZHQJVWnZtelbh1fZQoaAZoCWgPQwhnDd5X5fVZQJSGlFKUaBVN6ANoFkdAlVng2uPmxXV9lChoBmgJaA9DCCkiwypeU2FAlIaUUpRoFU3oA2gWR0CVXqvIwM6SdX2UKGgGaAloD0MIBoAqblyaYkCUhpRSlGgVTegDaBZHQJVhjHZK3/h1fZQoaAZoCWgPQwgZxt0g2q1hQJSGlFKUaBVN6ANoFkdAlfAmNFSbY3V9lChoBmgJaA9DCCAkC5jAtV9AlIaUUpRoFU3oA2gWR0CV8zOLR8c/dX2UKGgGaAloD0MIUwjkEsesY0CUhpRSlGgVTegDaBZHQJX2Bnwob4t1fZQoaAZoCWgPQwjnN0w0yIpgQJSGlFKUaBVN6ANoFkdAlf3o1k1/D3V9lChoBmgJaA9DCDkPJzCdDW9AlIaUUpRoFU1QAWgWR0CWAeya/h2odX2UKGgGaAloD0MIQS5x5IFwQ0CUhpRSlGgVS/poFkdAlgPL5hz/63V9lChoBmgJaA9DCA0Zj1IJ72RAlIaUUpRoFU3oA2gWR0CWBbNIsiB5dX2UKGgGaAloD0MIwvhp3JtKYECUhpRSlGgVTegDaBZHQJYGtiWmgrZ1fZQoaAZoCWgPQwjpfk5Bfs5aQJSGlFKUaBVN6ANoFkdAlgceZPVNH3V9lChoBmgJaA9DCEvIBz0bimVAlIaUUpRoFU3oA2gWR0CWG2QNkOI7dX2UKGgGaAloD0MI+rmhKbvJYUCUhpRSlGgVTegDaBZHQJYchYGMXJp1fZQoaAZoCWgPQwg9fQT+8F5gQJSGlFKUaBVN6ANoFkdAlimXH3lCC3V9lChoBmgJaA9DCMv0S8RbgzVAlIaUUpRoFUuuaBZHQJYq8ao/A0t1fZQoaAZoCWgPQwjxoNl1b7hjQJSGlFKUaBVN6ANoFkdAlisMf3evZHV9lChoBmgJaA9DCCwRqP5B/l1AlIaUUpRoFU3oA2gWR0CWK4dupCKKdX2UKGgGaAloD0MIL4hITbtPXkCUhpRSlGgVTegDaBZHQJYr9okAxSJ1fZQoaAZoCWgPQwgmbarukWlVQJSGlFKUaBVN6ANoFkdAli8JZSvTw3V9lChoBmgJaA9DCMWqQZhbKmFAlIaUUpRoFU3oA2gWR0CWM2TG5tm+dX2UKGgGaAloD0MI5rD7juEHa0CUhpRSlGgVTUoCaBZHQJY1foq0+kh1fZQoaAZoCWgPQwiEg72JIQleQJSGlFKUaBVN6ANoFkdAlkE6ASWZ7XV9lChoBmgJaA9DCH3LnC4LDWRAlIaUUpRoFU3oA2gWR0CWRAqAz544dX2UKGgGaAloD0MIDCJS064ZbUCUhpRSlGgVTW8BaBZHQJZG35ftx+91fZQoaAZoCWgPQwiY3v5cNDJcQJSGlFKUaBVN6ANoFkdAlkukMPSUknV9lChoBmgJaA9DCNY2xeMim2RAlIaUUpRoFU3oA2gWR0CWT6557gKndX2UKGgGaAloD0MIeT9uv3zqW0CUhpRSlGgVTegDaBZHQJZRhJjDsMR1fZQoaAZoCWgPQwgsRIfAEXBiQJSGlFKUaBVN6ANoFkdAllNRg3Lmp3V9lChoBmgJaA9DCDy858ByEWFAlIaUUpRoFU3oA2gWR0CWVE0EX+ERdX2UKGgGaAloD0MI3Xu45DivZECUhpRSlGgVTegDaBZHQJZpv7gsK9h1fZQoaAZoCWgPQwhCd0mcFVFhQJSGlFKUaBVN6ANoFkdAlna+0b961XV9lChoBmgJaA9DCJCIKZFEfV1AlIaUUpRoFU3oA2gWR0CWeC2i+L3sdX2UKGgGaAloD0MIH0jeORTkYkCUhpRSlGgVTegDaBZHQJZ4SCJ40Mx1fZQoaAZoCWgPQwjzGyYapDpgQJSGlFKUaBVN6ANoFkdAlnjDUd7v5XV9lChoBmgJaA9DCBqk4CnkRWFAlIaUUpRoFU3oA2gWR0CWfHpMpPRBdX2UKGgGaAloD0MI9fI7TWb6XECUhpRSlGgVTegDaBZHQJaBM2eg+Ql1fZQoaAZoCWgPQwjxoNl1b6FiQJSGlFKUaBVN6ANoFkdAloNhzzVc2XVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 170,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96cf681a4efd8b655b176a81789e557a004358fb01e53739ac143995b506fdc0
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b3957d84c62faf01e5e674981511c569850f82c0b354ad8a20155ff15dd5647
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c54818bde5653598fd28dfd3fa7dfcd75a993e20e28cf96f8c86f1101ada2fb9
|
3 |
+
size 247547
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 226.8118941975571, "std_reward": 11.751475128151476, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T19:33:54.108217"}
|