kujirahand's picture
Model save
346c10b
|
raw
history blame
2.29 kB
metadata
license: apache-2.0
base_model: openai/whisper-large
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: whisper-medium-r22-e
    results: []

whisper-medium-r22-e

This model is a fine-tuned version of openai/whisper-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2567
  • Wer: 32.4317

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • training_steps: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.2827 0.02 10 2.4594 30.6262
1.5383 0.04 20 0.9529 36.0561
0.5967 0.05 30 0.4230 34.7607
0.3559 0.07 40 0.3960 33.9352
0.314 0.09 50 0.3285 32.7270
0.3339 0.11 60 0.3362 33.3244
0.3148 0.13 70 0.2927 31.6464
0.3128 0.14 80 0.2896 32.5458
0.3136 0.16 90 0.2828 32.8613
0.272 0.18 100 0.2818 33.9419
0.1936 0.2 110 0.2702 30.9148
0.2541 0.22 120 0.2644 31.8209
0.2957 0.23 130 0.2614 31.6531
0.2867 0.25 140 0.2574 31.6397
0.2085 0.27 150 0.2567 32.4317

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1