Predicting English Translation

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

# Loading tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("kingabzpro/Helsinki-NLP-opus-yor-mul-en")
model = AutoModelForSeq2SeqLM.from_pretrained("kingabzpro/Helsinki-NLP-opus-yor-mul-en").to('cuda')

# Prediction
a = model.generate(**tokenizer.prepare_seq2seq_batch('Nínú ìpè kan lẹ́yìn ìgbà náà, wọ́n sọ fún aṣojú iléeṣẹ́ BlaBlaCar pé ètò náà ti yí padà, pé',return_tensors='pt').to('cuda'))
text = tokenizer.batch_decode(a)

# Cleaning text
text = str(text)
text = re.sub("<pad> ","",text)
text = re.sub("'","",text)
text = text.replace("[", "")
text = text.replace("]", "")
text

Result

'In a statement after that hearing, the BualaCard’s representative was told that the event had changed, that he had turned up.'

ROGUE Score

0.3025

Downloads last month
2,965
Safetensors
Model size
77.1M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.