Timeseries classification from scratch

Based on the Timeseries classification from scratch example on keras.io created by hfawaz.

Model description

The model is a Fully Convolutional Neural Network originally proposed in this paper. The implementation is based on the TF 2 version provided here. The hyperparameters (kernel_size, filters, the usage of BatchNorm) were found via random search using KerasTuner.

Intended uses & limitations

Given a time series of 500 samples, the goal is to automatically detect the presence of a specific issue with the engine.

The data used to train the model was already z-normalized: each timeseries sample has a mean equal to zero and a standard deviation equal to one.

Training and evaluation data

The dataset used here is called FordA. The data comes from the UCR archive. The dataset contains:

  • 3601 training instances
  • 1320 testing instances

Each timeseries corresponds to a measurement of engine noise captured by a motor sensor.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

name learning_rate decay beta_1 beta_2 epsilon amsgrad training_precision
Adam 9.999999747378752e-05 0.0 0.8999999761581421 0.9990000128746033 1e-07 False float32

Model Plot

View Model Plot

Model Image

Model reproduced by Edoardo Abati
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Space using keras-io/timeseries-classification-from-scratch 1