|
--- |
|
license: mit |
|
base_model: nielsr/lilt-xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- xfun |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: LiLT-SER-ES |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: xfun |
|
type: xfun |
|
config: xfun.es |
|
split: validation |
|
args: xfun.es |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.6718889883616831 |
|
- name: Recall |
|
type: recall |
|
value: 0.6733961417676088 |
|
- name: F1 |
|
type: f1 |
|
value: 0.6726417208155948 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7462640815388152 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# LiLT-SER-ES |
|
|
|
This model is a fine-tuned version of [nielsr/lilt-xlm-roberta-base](https://huggingface.co/nielsr/lilt-xlm-roberta-base) on the xfun dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.5588 |
|
- Precision: 0.6719 |
|
- Recall: 0.6734 |
|
- F1: 0.6726 |
|
- Accuracy: 0.7463 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 10000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall | |
|
|:-------------:|:------:|:-----:|:--------:|:------:|:---------------:|:---------:|:------:| |
|
| 0.2279 | 8.2 | 500 | 0.6790 | 0.5205 | 1.2508 | 0.4589 | 0.6012 | |
|
| 0.032 | 16.39 | 1000 | 0.6936 | 0.5885 | 1.9637 | 0.6321 | 0.5505 | |
|
| 0.0073 | 24.59 | 1500 | 0.7351 | 0.6175 | 1.6711 | 0.5795 | 0.6608 | |
|
| 0.0479 | 32.79 | 2000 | 0.7405 | 0.6422 | 1.8259 | 0.6265 | 0.6586 | |
|
| 0.0666 | 40.98 | 2500 | 0.7424 | 0.6349 | 1.8343 | 0.5937 | 0.6824 | |
|
| 0.0006 | 49.18 | 3000 | 0.7475 | 0.6536 | 2.0575 | 0.6512 | 0.6559 | |
|
| 0.0084 | 57.38 | 3500 | 0.7138 | 0.6415 | 2.4488 | 0.6758 | 0.6106 | |
|
| 0.0002 | 65.57 | 4000 | 0.7571 | 0.6468 | 1.9641 | 0.6406 | 0.6532 | |
|
| 0.0005 | 73.77 | 4500 | 2.2976 | 0.6699 | 0.6429 | 0.6561 | 0.7413 | |
|
| 0.0003 | 81.97 | 5000 | 2.1562 | 0.6287 | 0.6653 | 0.6465 | 0.7468 | |
|
| 0.0007 | 90.16 | 5500 | 2.2806 | 0.6435 | 0.6689 | 0.6560 | 0.7435 | |
|
| 0.0002 | 98.36 | 6000 | 2.0508 | 0.6294 | 0.6734 | 0.6506 | 0.7538 | |
|
| 0.0 | 106.56 | 6500 | 2.2626 | 0.6602 | 0.6765 | 0.6683 | 0.7498 | |
|
| 0.0 | 114.75 | 7000 | 2.3467 | 0.6687 | 0.6492 | 0.6588 | 0.7409 | |
|
| 0.0 | 122.95 | 7500 | 2.4430 | 0.6773 | 0.6734 | 0.6754 | 0.7447 | |
|
| 0.0 | 131.15 | 8000 | 2.3653 | 0.6643 | 0.6765 | 0.6704 | 0.7476 | |
|
| 0.0 | 139.34 | 8500 | 2.2903 | 0.6567 | 0.6824 | 0.6693 | 0.7498 | |
|
| 0.0 | 147.54 | 9000 | 2.4458 | 0.6536 | 0.6824 | 0.6677 | 0.7440 | |
|
| 0.0 | 155.74 | 9500 | 2.5953 | 0.6703 | 0.6685 | 0.6694 | 0.7423 | |
|
| 0.0 | 163.93 | 10000 | 2.5588 | 0.6719 | 0.6734 | 0.6726 | 0.7463 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.1 |
|
|