Model description
This model is an attempt to solve the 2025 FrugalAI challenge.
Intended uses & limitations
[More Information Needed]
Training Procedure
Trained using quick a random search
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('lemmatizer', FunctionTransformer(func=<function lemmatize_X at 0x7f5f1dd2fe50>)), ('tfidf', TfidfVectorizer(max_df=0.95, min_df=2, stop_words=['out', "mustn't", 'were', 'yours', 'ain', 'have', ';', '&', 'has', '+', "needn't", "you've", 'an', 'above', 'wouldn', 'll', 'aren', "should've", 'why', 'under', 'does', 'who', "you'd", 'is', 'itself', 'did', 'through', 'will', "shouldn't", 's', ...], tokenizer=<function tokenize_quote at 0x7f5f1dd73c10>)), ('rf', RandomForestClassifier(max_depth=14, max_features=0.1329083085318658, min_samples_leaf=7, min_samples_split=9, n_estimators=900, n_jobs=-1))] |
transform_input | |
verbose | False |
lemmatizer | FunctionTransformer(func=<function lemmatize_X at 0x7f5f1dd2fe50>) |
tfidf | TfidfVectorizer(max_df=0.95, min_df=2, stop_words=['out', "mustn't", 'were', 'yours', 'ain', 'have', ';', '&', 'has', '+', "needn't", "you've", 'an', 'above', 'wouldn', 'll', 'aren', "should've", 'why', 'under', 'does', 'who', "you'd", 'is', 'itself', 'did', 'through', 'will', "shouldn't", 's', ...], tokenizer=<function tokenize_quote at 0x7f5f1dd73c10>) |
rf | RandomForestClassifier(max_depth=14, max_features=0.1329083085318658, min_samples_leaf=7, min_samples_split=9, n_estimators=900, n_jobs=-1) |
lemmatizer__accept_sparse | False |
lemmatizer__check_inverse | True |
lemmatizer__feature_names_out | |
lemmatizer__func | <function lemmatize_X at 0x7f5f1dd2fe50> |
lemmatizer__inv_kw_args | |
lemmatizer__inverse_func | |
lemmatizer__kw_args | |
lemmatizer__validate | False |
tfidf__analyzer | word |
tfidf__binary | False |
tfidf__decode_error | strict |
tfidf__dtype | <class 'numpy.float64'> |
tfidf__encoding | utf-8 |
tfidf__input | content |
tfidf__lowercase | True |
tfidf__max_df | 0.95 |
tfidf__max_features | |
tfidf__min_df | 2 |
tfidf__ngram_range | (1, 1) |
tfidf__norm | l2 |
tfidf__preprocessor | |
tfidf__smooth_idf | True |
tfidf__stop_words | ['out', "mustn't", 'were', 'yours', 'ain', 'have', ';', '&', 'has', '+', "needn't", "you've", 'an', 'above', 'wouldn', 'll', 'aren', "should've", 'why', 'under', 'does', 'who', "you'd", 'is', 'itself', 'did', 'through', 'will', "shouldn't", 's', ']', 'should', "mightn't", 'my', 'ourselves', 'the', 'both', 'up', 'but', 'more', 're', 'weren', "you'll", 'over', 'there', 'it', '#', 'that', 'what', 'just', 'mustn', 'not', ':', 'further', 'had', "wouldn't", 'him', "weren't", 'a', 'doing', 'own', '=', 'me', 'mightn', 'ma', 'this', 'theirs', 'was', "shan't", 'can', 'themselves', '.', 'shouldn', 'y', 'about', '>', 'yourselves', 'on', 'once', 'against', 'few', 'you', '*', 'while', 'hadn', 'below', ' |
tfidf__strip_accents | |
tfidf__sublinear_tf | False |
tfidf__token_pattern | (?u)\b\w\w+\b |
tfidf__tokenizer | <function tokenize_quote at 0x7f5f1dd73c10> |
tfidf__use_idf | True |
tfidf__vocabulary | |
rf__bootstrap | True |
rf__ccp_alpha | 0.0 |
rf__class_weight | |
rf__criterion | gini |
rf__max_depth | 14 |
rf__max_features | 0.1329083085318658 |
rf__max_leaf_nodes | |
rf__max_samples | |
rf__min_impurity_decrease | 0.0 |
rf__min_samples_leaf | 7 |
rf__min_samples_split | 9 |
rf__min_weight_fraction_leaf | 0.0 |
rf__monotonic_cst | |
rf__n_estimators | 900 |
rf__n_jobs | -1 |
rf__oob_score | False |
rf__random_state | |
rf__verbose | 0 |
rf__warm_start | False |
Model Plot
Pipeline(steps=[('lemmatizer',FunctionTransformer(func=<function lemmatize_X at 0x7f5f1dd2fe50>)),('tfidf',TfidfVectorizer(max_df=0.95, min_df=2,stop_words=['out', "mustn't", 'were', 'yours','ain', 'have', ';', '&', 'has','+', "needn't", "you've", 'an','above', 'wouldn', 'll', 'aren',"should've", 'why', 'under','does', 'who', "you'd", 'is','itself', 'did', 'through', 'will',"shouldn't", 's', ...],tokenizer=<function tokenize_quote at 0x7f5f1dd73c10>)),('rf',RandomForestClassifier(max_depth=14,max_features=0.1329083085318658,min_samples_leaf=7, min_samples_split=9,n_estimators=900, n_jobs=-1))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Pipeline(steps=[('lemmatizer',FunctionTransformer(func=<function lemmatize_X at 0x7f5f1dd2fe50>)),('tfidf',TfidfVectorizer(max_df=0.95, min_df=2,stop_words=['out', "mustn't", 'were', 'yours','ain', 'have', ';', '&', 'has','+', "needn't", "you've", 'an','above', 'wouldn', 'll', 'aren',"should've", 'why', 'under','does', 'who', "you'd", 'is','itself', 'did', 'through', 'will',"shouldn't", 's', ...],tokenizer=<function tokenize_quote at 0x7f5f1dd73c10>)),('rf',RandomForestClassifier(max_depth=14,max_features=0.1329083085318658,min_samples_leaf=7, min_samples_split=9,n_estimators=900, n_jobs=-1))])
FunctionTransformer(func=<function lemmatize_X at 0x7f5f1dd2fe50>)
TfidfVectorizer(max_df=0.95, min_df=2,stop_words=['out', "mustn't", 'were', 'yours', 'ain', 'have',';', '&', 'has', '+', "needn't", "you've", 'an','above', 'wouldn', 'll', 'aren', "should've", 'why','under', 'does', 'who', "you'd", 'is', 'itself','did', 'through', 'will', "shouldn't", 's', ...],tokenizer=<function tokenize_quote at 0x7f5f1dd73c10>)
RandomForestClassifier(max_depth=14, max_features=0.1329083085318658,min_samples_leaf=7, min_samples_split=9,n_estimators=900, n_jobs=-1)
Evaluation Results
Metric | Value |
---|---|
accuracy | 0.495488 |
f1_score | 0.482301 |
How to Get Started with the Model
[More Information Needed]
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]
Confusion Matrix
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.