randomization_model

This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2766
  • Bleu: 0.0001
  • Wer: 0.9507
  • Rougel: 0.1324
  • Gen Len: 18.9988

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Wer Rougel Gen Len
1.6112 0.16 1000 1.2949 0.0001 0.9506 0.1323 18.9988
1.5684 0.32 2000 1.2655 0.0001 0.9503 0.1328 18.9988
1.5378 0.48 3000 1.2461 0.0001 0.95 0.1334 18.9985
1.5183 0.64 4000 1.2246 0.0001 0.95 0.1334 18.9985
1.5065 0.8 5000 1.2108 0.0001 0.9499 0.1336 18.9985
1.4787 0.96 6000 1.1975 0.0001 0.9498 0.1338 18.9986
1.5081 1.12 7000 1.2173 0.0001 0.9498 0.134 18.9986
1.6302 1.28 8000 1.2801 0.0001 0.9507 0.1325 18.9988
1.6337 1.44 9000 1.2766 0.0001 0.9507 0.1324 18.9988
1.6333 1.6 10000 1.2766 0.0001 0.9507 0.1324 18.9988
1.6246 1.76 11000 1.2766 0.0001 0.9507 0.1324 18.9988
1.6219 1.92 12000 1.2766 0.0001 0.9507 0.1324 18.9988

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.3.0.dev20240122+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
35
Safetensors
Model size
223M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for jvalline/randomization_model

Base model

google-t5/t5-base
Finetuned
(457)
this model