See axolotl config
axolotl version: 0.6.0
adapter: lora
auto_find_batch_size: true
base_model: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 6c11f7ee9fd5bc58_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6c11f7ee9fd5bc58_train_data.json
type:
field_instruction: prompt
field_output: chosen_response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_batch_size: 32
eval_max_new_tokens: 128
eval_steps: 500
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: jssky/3333a13d-a24f-4a98-b13f-a97324b77310
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 1000
micro_batch_size: 128
mlflow_experiment_name: /tmp/6c11f7ee9fd5bc58_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 00004a65-1430-449c-be79-5ca6fffeac7e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 00004a65-1430-449c-be79-5ca6fffeac7e
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
3333a13d-a24f-4a98-b13f-a97324b77310
This model is a fine-tuned version of aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 128
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 138
Training results
Framework versions
- PEFT 0.14.0
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for jssky/3333a13d-a24f-4a98-b13f-a97324b77310
Base model
meta-llama/Meta-Llama-3-8B-Instruct