metadata
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- data_registros_layoutv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-registros_100
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: data_registros_layoutv3
type: data_registros_layoutv3
config: default
split: test
args: default
metrics:
- name: Precision
type: precision
value: 0.9871382636655949
- name: Recall
type: recall
value: 0.9935275080906149
- name: F1
type: f1
value: 0.9903225806451612
- name: Accuracy
type: accuracy
value: 0.9992192379762649
layoutlmv3-finetuned-registros_100
This model is a fine-tuned version of microsoft/layoutlmv3-base on the data_registros_layoutv3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0110
- Precision: 0.9871
- Recall: 0.9935
- F1: 0.9903
- Accuracy: 0.9992
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 10.87 | 250 | 0.4325 | 0.2663 | 0.2638 | 0.2650 | 0.8982 |
0.6304 | 21.74 | 500 | 0.2065 | 0.7715 | 0.8139 | 0.7921 | 0.9622 |
0.6304 | 32.61 | 750 | 0.1058 | 0.9048 | 0.9385 | 0.9214 | 0.9866 |
0.1413 | 43.48 | 1000 | 0.0600 | 0.9314 | 0.9660 | 0.9484 | 0.9944 |
0.1413 | 54.35 | 1250 | 0.0377 | 0.9451 | 0.9741 | 0.9594 | 0.9969 |
0.0558 | 65.22 | 1500 | 0.0277 | 0.9697 | 0.9838 | 0.9767 | 0.9981 |
0.0558 | 76.09 | 1750 | 0.0199 | 0.9792 | 0.9903 | 0.9847 | 0.9988 |
0.0307 | 86.96 | 2000 | 0.0160 | 0.9824 | 0.9919 | 0.9871 | 0.9989 |
0.0307 | 97.83 | 2250 | 0.0147 | 0.9823 | 0.9903 | 0.9863 | 0.9988 |
0.0211 | 108.7 | 2500 | 0.0122 | 0.9871 | 0.9935 | 0.9903 | 0.9992 |
0.0211 | 119.57 | 2750 | 0.0113 | 0.9871 | 0.9935 | 0.9903 | 0.9992 |
0.0174 | 130.43 | 3000 | 0.0110 | 0.9871 | 0.9935 | 0.9903 | 0.9992 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3