jpino's picture
update model card README.md
c5ef67f
|
raw
history blame
3.15 kB
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - data_registros_layoutv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-registros_100
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: data_registros_layoutv3
          type: data_registros_layoutv3
          config: default
          split: test
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.9871382636655949
          - name: Recall
            type: recall
            value: 0.9935275080906149
          - name: F1
            type: f1
            value: 0.9903225806451612
          - name: Accuracy
            type: accuracy
            value: 0.9992192379762649

layoutlmv3-finetuned-registros_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the data_registros_layoutv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0110
  • Precision: 0.9871
  • Recall: 0.9935
  • F1: 0.9903
  • Accuracy: 0.9992

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 10.87 250 0.4325 0.2663 0.2638 0.2650 0.8982
0.6304 21.74 500 0.2065 0.7715 0.8139 0.7921 0.9622
0.6304 32.61 750 0.1058 0.9048 0.9385 0.9214 0.9866
0.1413 43.48 1000 0.0600 0.9314 0.9660 0.9484 0.9944
0.1413 54.35 1250 0.0377 0.9451 0.9741 0.9594 0.9969
0.0558 65.22 1500 0.0277 0.9697 0.9838 0.9767 0.9981
0.0558 76.09 1750 0.0199 0.9792 0.9903 0.9847 0.9988
0.0307 86.96 2000 0.0160 0.9824 0.9919 0.9871 0.9989
0.0307 97.83 2250 0.0147 0.9823 0.9903 0.9863 0.9988
0.0211 108.7 2500 0.0122 0.9871 0.9935 0.9903 0.9992
0.0211 119.57 2750 0.0113 0.9871 0.9935 0.9903 0.9992
0.0174 130.43 3000 0.0110 0.9871 0.9935 0.9903 0.9992

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3