jinhybr's picture
Update README.md
9284394 verified
|
raw
history blame
2.45 kB
metadata
license: apache-2.0
base_model: distilroberta-base
tags:
  - generated_from_trainer
metrics:
  - f1
model-index:
  - name: distilroberta-ConLL2003
    results: []

distilroberta-ConLL2003

This model is a fine-tuned version of distilroberta-base on ConLL2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0585
  • F1: 0.9536

The best scores for Named Entity Recognition (NER) on CoNLL 2003 (English) is 94.6% from [the ConLL2003 NER benchmark] (https://paperswithcode.com/sota/named-entity-recognition-ner-on-conll-2003), This fine-tuned Model has achieved 95.36%.

Model Usage

from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained("jinhybr/distilroberta-ConLL2003")
model = AutoModelForTokenClassification.from_pretrained("jinhybr/distilroberta-ConLL2003")

nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
example = "My name is Tao Jin and live in Canada"
ner_results = nlp(example)
print(ner_results)

[{'entity_group': 'PER', 'score': 0.99686015, 'word': ' Tao Jin', 'start': 11, 'end': 18}, {'entity_group': 'LOC', 'score': 0.9996836, 'word': ' Canada', 'start': 31, 'end': 37}]

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6.0

Training results

Training Loss Epoch Step Validation Loss F1
0.1666 1.0 439 0.0621 0.9345
0.0499 2.0 878 0.0564 0.9391
0.0273 3.0 1317 0.0553 0.9469
0.0167 4.0 1756 0.0553 0.9492
0.0103 5.0 2195 0.0572 0.9516
0.0068 6.0 2634 0.0585 0.9536

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.1