|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: resnet-50-FV2-finetuned-memes |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6452859350850078 |
|
- name: Precision |
|
type: precision |
|
value: 0.5727919568038408 |
|
- name: Recall |
|
type: recall |
|
value: 0.6452859350850078 |
|
- name: F1 |
|
type: f1 |
|
value: 0.5963647629954705 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# resnet-50-FV2-finetuned-memes |
|
|
|
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9263 |
|
- Accuracy: 0.6453 |
|
- Precision: 0.5728 |
|
- Recall: 0.6453 |
|
- F1: 0.5964 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.00012 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 1.5763 | 0.99 | 20 | 1.5575 | 0.4281 | 0.2966 | 0.4281 | 0.2669 | |
|
| 1.4761 | 1.99 | 40 | 1.4424 | 0.4343 | 0.1886 | 0.4343 | 0.2630 | |
|
| 1.3563 | 2.99 | 60 | 1.3240 | 0.4343 | 0.1886 | 0.4343 | 0.2630 | |
|
| 1.2824 | 3.99 | 80 | 1.2636 | 0.4389 | 0.3097 | 0.4389 | 0.2734 | |
|
| 1.2315 | 4.99 | 100 | 1.2119 | 0.4529 | 0.3236 | 0.4529 | 0.3042 | |
|
| 1.1956 | 5.99 | 120 | 1.1764 | 0.4900 | 0.3731 | 0.4900 | 0.3692 | |
|
| 1.1452 | 6.99 | 140 | 1.1424 | 0.5147 | 0.3963 | 0.5147 | 0.4090 | |
|
| 1.1076 | 7.99 | 160 | 1.1190 | 0.5371 | 0.4121 | 0.5371 | 0.4392 | |
|
| 1.0679 | 8.99 | 180 | 1.0825 | 0.5719 | 0.4465 | 0.5719 | 0.4831 | |
|
| 1.0432 | 9.99 | 200 | 1.0482 | 0.5750 | 0.5404 | 0.5750 | 0.4930 | |
|
| 0.9903 | 10.99 | 220 | 1.0275 | 0.5958 | 0.5459 | 0.5958 | 0.5241 | |
|
| 0.9675 | 11.99 | 240 | 1.0145 | 0.6051 | 0.5350 | 0.6051 | 0.5379 | |
|
| 0.9335 | 12.99 | 260 | 0.9860 | 0.6175 | 0.5537 | 0.6175 | 0.5527 | |
|
| 0.9157 | 13.99 | 280 | 0.9683 | 0.6105 | 0.5386 | 0.6105 | 0.5504 | |
|
| 0.8901 | 14.99 | 300 | 0.9558 | 0.6352 | 0.5686 | 0.6352 | 0.5833 | |
|
| 0.8722 | 15.99 | 320 | 0.9382 | 0.6345 | 0.5657 | 0.6345 | 0.5807 | |
|
| 0.854 | 16.99 | 340 | 0.9322 | 0.6376 | 0.5623 | 0.6376 | 0.5856 | |
|
| 0.8494 | 17.99 | 360 | 0.9287 | 0.6422 | 0.6675 | 0.6422 | 0.5918 | |
|
| 0.8652 | 18.99 | 380 | 0.9212 | 0.6399 | 0.5640 | 0.6399 | 0.5863 | |
|
| 0.846 | 19.99 | 400 | 0.9263 | 0.6453 | 0.5728 | 0.6453 | 0.5964 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0.dev0 |
|
- Pytorch 1.11.0+cu102 |
|
- Datasets 2.6.1.dev0 |
|
- Tokenizers 0.13.1 |
|
|