ilsp
/

ilsp/justice

  • Models for processing Greek court decisions

Paragraph classification

repo_id = "ilsp/justice"
model_path = hf_hub_download(repo_id=repo_id, filename="20250105-court_decisions_paragraph_classifier.ftz")
sample_decision = hf_hub_download(repo_id=repo_id, filename="sample_data/Α2485_2023.txt") # anonymized decision
model = load_model(model_path)
labels_map =  {
  'preamble': '__label__0', '__label__0': 'preamble',
  'panel': '__label__1', '__label__1': 'panel',
  'litigants': '__label__2', '__label__2': 'litigants',
  'justification': '__label__3', '__label__3': 'justification',
  'decision': '__label__4', '__label__4': 'decision',
  'post': '__label__5', '__label__5': 'post'}

with open(sample_decision) as inf:
    paras = [p for p in inf.read().split(NL) if p.strip()]
    random.shuffle(paras)
    text = NL.join(paras)

nchars = 150
for line in text.split(NL):
    pred = labels_map[model.predict(line.strip())[0][0]]
    if len(line) > nchars:
        line = line[0:nchars]
    print(f"{line} -> {pred}")    

Named entity recognition for anonymization in court decisions

from flair.data import Sentence, Token
from flair.models import SequenceTagger
from huggingface_hub import hf_hub_download

REPO_ID = "ilsp/justice"
MODEL_PATH = "decisions-ner-model.pt"
model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_PATH)        
model = SequenceTagger.load(model_path)

text = "Για να δικάσει την από 30 Μαρτίου 2020 έφεση των 1) Νίκης Νικίδου του Νίκου , κατοίκου Νίκαιας ( Νεάπολης 1 ) , 2) Άννας Άννίδου του Άνθιμου , κατοίκου Αθήνας ( Αγράμπελης 1 ) και 3) Σοφίας Σοφίδου του Σοφοκλή , κατοίκου Στυλίδας ( Στρυμώνος 1 ) , οι οποίοι παρέστησαν με τον δικηγόρο Λυσία Λυσίου ( Α.Μ. 12341 ) , που τον διόρισαν με πληρεξούσιο ."
sentence = Sentence([Token(t) for t in text.split()]) # or use a sentence splitter
model.predict(sentence)
sentence.get_spans("ner")
[Span[11:13]: "Νίκης Νικίδου" → PERSON (1.0000),
 Span[14:15]: "Νίκου" → PERSON (1.0000),
 Span[19:21]: "Νεάπολης 1" → FAC (1.0000),
 Span[24:26]: "Άννας Άννίδου" → PERSON (1.0000),
 Span[27:28]: "Άνθιμου" → PERSON (1.0000),
 Span[32:34]: "Αγράμπελης 1" → FAC (1.0000),
 Span[37:39]: "Σοφίας Σοφίδου" → PERSON (1.0000),
 Span[40:41]: "Σοφοκλή" → PERSON (1.0000),
 Span[45:47]: "Στρυμώνος 1" → FAC (1.0000)]
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support text-classification models for fasttext, flair library.