output

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1131
  • F1: 0.9809

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1
0.3479 0.0856 50 0.1687 0.9652
0.1711 0.1712 100 0.2640 0.9259
0.1464 0.2568 150 0.1211 0.9762
0.099 0.3425 200 0.0968 0.9803
0.0991 0.4281 250 0.1052 0.9768
0.1037 0.5137 300 0.0974 0.9759
0.096 0.5993 350 0.0838 0.9812
0.0773 0.6849 400 0.1089 0.9765
0.0824 0.7705 450 0.1058 0.9809
0.1142 0.8562 500 0.0911 0.9794
0.0984 0.9418 550 0.0816 0.9803
0.0821 1.0274 600 0.0891 0.9835
0.0761 1.1130 650 0.0953 0.9791
0.0706 1.1986 700 0.1002 0.9835
0.0745 1.2842 750 0.0872 0.9827
0.0831 1.3699 800 0.1102 0.9794
0.0828 1.4555 850 0.0895 0.9833
0.0656 1.5411 900 0.0969 0.9812
0.0859 1.6267 950 0.0856 0.9841
0.0608 1.7123 1000 0.0873 0.9797
0.0751 1.7979 1050 0.0818 0.9835
0.0561 1.8836 1100 0.0808 0.9833
0.0753 1.9692 1150 0.0839 0.9838
0.0758 2.0548 1200 0.0955 0.9824
0.0413 2.1404 1250 0.1082 0.9827
0.0572 2.2260 1300 0.0906 0.9821
0.0597 2.3116 1350 0.0847 0.9830
0.0506 2.3973 1400 0.0870 0.9838
0.0629 2.4829 1450 0.0843 0.9815
0.0404 2.5685 1500 0.1024 0.9830
0.0476 2.6541 1550 0.0809 0.9833
0.0556 2.7397 1600 0.0895 0.9830
0.0803 2.8253 1650 0.0840 0.9824
0.0856 2.9110 1700 0.0812 0.9841
0.0475 2.9966 1750 0.0955 0.9827
0.05 3.0822 1800 0.0849 0.9824
0.0409 3.1678 1850 0.0958 0.9812
0.0368 3.2534 1900 0.1069 0.9821
0.0423 3.3390 1950 0.1012 0.9809
0.0444 3.4247 2000 0.0959 0.9809
0.0456 3.5103 2050 0.0923 0.9806
0.0518 3.5959 2100 0.0985 0.9821
0.029 3.6815 2150 0.1144 0.9818
0.0453 3.7671 2200 0.0975 0.9809
0.0452 3.8527 2250 0.1031 0.9815
0.0369 3.9384 2300 0.0918 0.9827
0.038 4.0240 2350 0.0907 0.9830
0.0329 4.1096 2400 0.1058 0.9821
0.0249 4.1952 2450 0.1093 0.9818
0.0467 4.2808 2500 0.1006 0.9803
0.0328 4.3664 2550 0.1100 0.9824
0.0314 4.4521 2600 0.1150 0.9815
0.0274 4.5377 2650 0.1147 0.9821
0.0377 4.6233 2700 0.1173 0.9824
0.0378 4.7089 2750 0.1169 0.9827
0.0228 4.7945 2800 0.1141 0.9818
0.0281 4.8801 2850 0.1138 0.9809
0.0362 4.9658 2900 0.1131 0.9809

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for icapital-alpha-user/output

Finetuned
(7467)
this model