hkivancoral's picture
End of training
e8a000c
|
raw
history blame
4.84 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_sgd_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9

smids_5x_deit_tiny_sgd_001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2648
  • Accuracy: 0.9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7316 1.0 375 0.7849 0.6383
0.5408 2.0 750 0.5416 0.805
0.4144 3.0 1125 0.4477 0.8483
0.4149 4.0 1500 0.3929 0.8533
0.413 5.0 1875 0.3596 0.865
0.347 6.0 2250 0.3405 0.87
0.3766 7.0 2625 0.3237 0.885
0.3353 8.0 3000 0.3140 0.8833
0.2912 9.0 3375 0.3069 0.8817
0.2983 10.0 3750 0.3022 0.8883
0.2271 11.0 4125 0.2992 0.8867
0.2804 12.0 4500 0.2892 0.8917
0.2434 13.0 4875 0.2876 0.89
0.2434 14.0 5250 0.2819 0.8883
0.2457 15.0 5625 0.2817 0.8967
0.2178 16.0 6000 0.2772 0.9
0.2586 17.0 6375 0.2753 0.9
0.2424 18.0 6750 0.2760 0.8967
0.2316 19.0 7125 0.2730 0.8967
0.236 20.0 7500 0.2701 0.9033
0.1785 21.0 7875 0.2679 0.9017
0.1868 22.0 8250 0.2698 0.9
0.2515 23.0 8625 0.2683 0.8983
0.2504 24.0 9000 0.2635 0.8967
0.2044 25.0 9375 0.2645 0.9033
0.2051 26.0 9750 0.2668 0.8983
0.2231 27.0 10125 0.2645 0.9033
0.2003 28.0 10500 0.2627 0.8983
0.1423 29.0 10875 0.2631 0.9033
0.2099 30.0 11250 0.2641 0.9
0.2023 31.0 11625 0.2642 0.9
0.2174 32.0 12000 0.2642 0.9
0.198 33.0 12375 0.2636 0.8967
0.1518 34.0 12750 0.2625 0.9033
0.1375 35.0 13125 0.2629 0.9017
0.1414 36.0 13500 0.2638 0.9017
0.1599 37.0 13875 0.2634 0.9033
0.164 38.0 14250 0.2642 0.9
0.1442 39.0 14625 0.2626 0.8983
0.1928 40.0 15000 0.2641 0.9017
0.1643 41.0 15375 0.2643 0.9017
0.1534 42.0 15750 0.2642 0.9017
0.1818 43.0 16125 0.2644 0.9017
0.1596 44.0 16500 0.2650 0.9
0.1441 45.0 16875 0.2645 0.9017
0.1513 46.0 17250 0.2643 0.9
0.1221 47.0 17625 0.2647 0.9
0.1853 48.0 18000 0.2646 0.9
0.1404 49.0 18375 0.2649 0.9
0.1644 50.0 18750 0.2648 0.9

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2