hkivancoral's picture
End of training
1271807
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_adamax_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8966666666666666

smids_5x_deit_tiny_adamax_001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0054
  • Accuracy: 0.8967

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4039 1.0 375 0.4314 0.825
0.345 2.0 750 0.2900 0.8967
0.2226 3.0 1125 0.4260 0.8533
0.2463 4.0 1500 0.4152 0.84
0.132 5.0 1875 0.3792 0.8767
0.0976 6.0 2250 0.4696 0.8783
0.1565 7.0 2625 0.3805 0.8833
0.0928 8.0 3000 0.5026 0.8867
0.0864 9.0 3375 0.4372 0.8817
0.0498 10.0 3750 0.5601 0.8617
0.0645 11.0 4125 0.5273 0.8983
0.0761 12.0 4500 0.5529 0.8867
0.0594 13.0 4875 0.5381 0.88
0.039 14.0 5250 0.6308 0.895
0.0193 15.0 5625 0.5515 0.89
0.0113 16.0 6000 0.7221 0.8667
0.008 17.0 6375 0.6792 0.9017
0.0388 18.0 6750 0.7109 0.8883
0.0009 19.0 7125 0.6719 0.8967
0.023 20.0 7500 0.7328 0.8917
0.0093 21.0 7875 0.8033 0.8917
0.0223 22.0 8250 0.6700 0.8983
0.0002 23.0 8625 0.7140 0.8967
0.0504 24.0 9000 0.8112 0.9
0.0006 25.0 9375 0.7975 0.8833
0.0027 26.0 9750 0.9326 0.885
0.0053 27.0 10125 0.8820 0.8817
0.0 28.0 10500 0.9014 0.89
0.0046 29.0 10875 0.8788 0.8917
0.0025 30.0 11250 0.9368 0.8967
0.0 31.0 11625 0.9273 0.895
0.0 32.0 12000 1.0112 0.8817
0.0014 33.0 12375 0.8964 0.89
0.0 34.0 12750 0.9035 0.8983
0.0 35.0 13125 0.9036 0.8983
0.0 36.0 13500 0.9211 0.8983
0.0 37.0 13875 0.9473 0.9033
0.0039 38.0 14250 0.9999 0.8883
0.0 39.0 14625 0.9726 0.8967
0.0 40.0 15000 0.9581 0.8967
0.0 41.0 15375 0.9592 0.9
0.0 42.0 15750 0.9776 0.9
0.0 43.0 16125 0.9762 0.8967
0.0 44.0 16500 0.9706 0.8983
0.0 45.0 16875 0.9775 0.8967
0.0 46.0 17250 0.9930 0.8983
0.0029 47.0 17625 0.9955 0.8983
0.0 48.0 18000 1.0006 0.8983
0.0 49.0 18375 1.0043 0.8967
0.0021 50.0 18750 1.0054 0.8967

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2