hkivancoral's picture
End of training
617a1ed
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_adamax_0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8752079866888519

smids_5x_deit_tiny_adamax_0001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2333
  • Accuracy: 0.8752

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2658 1.0 375 0.3487 0.8686
0.2056 2.0 750 0.3572 0.8802
0.1091 3.0 1125 0.4053 0.8785
0.0803 4.0 1500 0.6864 0.8636
0.0671 5.0 1875 0.6967 0.8702
0.0046 6.0 2250 0.8951 0.8636
0.0027 7.0 2625 0.7926 0.8852
0.0005 8.0 3000 0.7839 0.8769
0.0002 9.0 3375 0.8871 0.8869
0.0002 10.0 3750 0.8009 0.8968
0.0097 11.0 4125 0.9981 0.8669
0.0006 12.0 4500 1.0041 0.8719
0.01 13.0 4875 0.9204 0.8735
0.0001 14.0 5250 0.9628 0.8785
0.036 15.0 5625 0.9459 0.8752
0.0001 16.0 6000 0.9812 0.8819
0.0022 17.0 6375 0.9724 0.8819
0.004 18.0 6750 1.0660 0.8769
0.0 19.0 7125 0.9857 0.8719
0.0 20.0 7500 1.0524 0.8752
0.0 21.0 7875 1.0663 0.8686
0.0 22.0 8250 1.1115 0.8686
0.0 23.0 8625 1.0536 0.8752
0.0 24.0 9000 1.0776 0.8719
0.0 25.0 9375 1.0945 0.8686
0.0 26.0 9750 1.1377 0.8802
0.0 27.0 10125 1.1130 0.8735
0.0 28.0 10500 1.1384 0.8735
0.0 29.0 10875 1.1315 0.8769
0.0 30.0 11250 1.1249 0.8752
0.0037 31.0 11625 1.1445 0.8752
0.0039 32.0 12000 1.1633 0.8719
0.0041 33.0 12375 1.1577 0.8785
0.0 34.0 12750 1.1917 0.8686
0.0 35.0 13125 1.2054 0.8702
0.0 36.0 13500 1.1857 0.8735
0.0 37.0 13875 1.1926 0.8719
0.0 38.0 14250 1.2094 0.8719
0.0 39.0 14625 1.2019 0.8769
0.003 40.0 15000 1.2092 0.8752
0.0 41.0 15375 1.2117 0.8769
0.0026 42.0 15750 1.2195 0.8769
0.0026 43.0 16125 1.2211 0.8752
0.0026 44.0 16500 1.2245 0.8769
0.0024 45.0 16875 1.2259 0.8769
0.0 46.0 17250 1.2293 0.8752
0.0049 47.0 17625 1.2287 0.8752
0.0 48.0 18000 1.2326 0.8752
0.0023 49.0 18375 1.2328 0.8752
0.0024 50.0 18750 1.2333 0.8752

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2