hkivancoral's picture
End of training
0731621
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_adamax_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8883333333333333

smids_5x_deit_tiny_adamax_00001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8310
  • Accuracy: 0.8883

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3076 1.0 375 0.3691 0.8367
0.2287 2.0 750 0.2879 0.8783
0.189 3.0 1125 0.2852 0.885
0.1751 4.0 1500 0.2883 0.8867
0.0982 5.0 1875 0.3260 0.8833
0.0575 6.0 2250 0.3348 0.875
0.0552 7.0 2625 0.3820 0.8883
0.0223 8.0 3000 0.4434 0.89
0.0296 9.0 3375 0.4885 0.8883
0.005 10.0 3750 0.5225 0.8917
0.0192 11.0 4125 0.5900 0.8883
0.006 12.0 4500 0.6146 0.885
0.0003 13.0 4875 0.6354 0.8867
0.0012 14.0 5250 0.6738 0.8867
0.0003 15.0 5625 0.7057 0.8767
0.0001 16.0 6000 0.6776 0.8967
0.0001 17.0 6375 0.7281 0.885
0.0151 18.0 6750 0.7671 0.88
0.0 19.0 7125 0.7446 0.885
0.0 20.0 7500 0.7595 0.885
0.0 21.0 7875 0.7847 0.8833
0.0104 22.0 8250 0.8045 0.8867
0.0001 23.0 8625 0.8013 0.885
0.0 24.0 9000 0.8150 0.8833
0.0 25.0 9375 0.8170 0.885
0.0 26.0 9750 0.8095 0.8883
0.0 27.0 10125 0.8047 0.8867
0.0 28.0 10500 0.8115 0.8867
0.0 29.0 10875 0.8193 0.8867
0.0071 30.0 11250 0.8281 0.8883
0.0 31.0 11625 0.8141 0.89
0.0 32.0 12000 0.8187 0.89
0.0 33.0 12375 0.8183 0.8883
0.0 34.0 12750 0.8223 0.885
0.0 35.0 13125 0.8200 0.8867
0.0 36.0 13500 0.8256 0.8883
0.0 37.0 13875 0.8249 0.8883
0.0017 38.0 14250 0.8193 0.8883
0.0 39.0 14625 0.8227 0.885
0.0 40.0 15000 0.8247 0.89
0.0 41.0 15375 0.8288 0.885
0.0 42.0 15750 0.8238 0.8917
0.0 43.0 16125 0.8250 0.8883
0.0 44.0 16500 0.8262 0.8917
0.0 45.0 16875 0.8283 0.8917
0.0 46.0 17250 0.8299 0.8867
0.0027 47.0 17625 0.8304 0.8867
0.0 48.0 18000 0.8306 0.8867
0.0 49.0 18375 0.8310 0.8867
0.004 50.0 18750 0.8310 0.8883

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2