hkivancoral's picture
End of training
5e5fcc0
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_adamax_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8716666666666667

smids_5x_deit_tiny_adamax_00001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3354
  • Accuracy: 0.8717

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2847 1.0 375 0.3588 0.86
0.2399 2.0 750 0.3497 0.8783
0.1069 3.0 1125 0.3839 0.8683
0.1588 4.0 1500 0.3944 0.8767
0.0651 5.0 1875 0.4658 0.8717
0.0408 6.0 2250 0.5268 0.8767
0.026 7.0 2625 0.6145 0.865
0.0213 8.0 3000 0.6639 0.8717
0.0032 9.0 3375 0.8259 0.8583
0.0148 10.0 3750 0.8114 0.8717
0.015 11.0 4125 0.8747 0.87
0.0014 12.0 4500 0.9000 0.8783
0.0001 13.0 4875 0.9761 0.87
0.015 14.0 5250 0.9964 0.87
0.0001 15.0 5625 1.0366 0.87
0.0 16.0 6000 1.0464 0.8733
0.0 17.0 6375 1.0647 0.8733
0.0197 18.0 6750 1.1060 0.87
0.0 19.0 7125 1.1223 0.87
0.0 20.0 7500 1.1307 0.8717
0.0 21.0 7875 1.1563 0.8667
0.0 22.0 8250 1.1659 0.8717
0.0 23.0 8625 1.1873 0.8717
0.0 24.0 9000 1.1966 0.875
0.0 25.0 9375 1.2159 0.8667
0.0 26.0 9750 1.2192 0.8667
0.0 27.0 10125 1.2446 0.865
0.0 28.0 10500 1.2249 0.8683
0.0 29.0 10875 1.2382 0.8717
0.0 30.0 11250 1.2391 0.87
0.0 31.0 11625 1.2547 0.8733
0.0 32.0 12000 1.2771 0.87
0.0 33.0 12375 1.2797 0.8717
0.0 34.0 12750 1.2938 0.87
0.0 35.0 13125 1.2859 0.87
0.0 36.0 13500 1.2998 0.8717
0.0 37.0 13875 1.2941 0.8683
0.0015 38.0 14250 1.3001 0.8683
0.0 39.0 14625 1.3082 0.8717
0.0 40.0 15000 1.3151 0.8717
0.0 41.0 15375 1.3188 0.8717
0.0 42.0 15750 1.3223 0.8717
0.0 43.0 16125 1.3285 0.87
0.0 44.0 16500 1.3298 0.87
0.0 45.0 16875 1.3317 0.87
0.0 46.0 17250 1.3330 0.87
0.0 47.0 17625 1.3343 0.87
0.0 48.0 18000 1.3352 0.87
0.0 49.0 18375 1.3354 0.8717
0.0 50.0 18750 1.3354 0.8717

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2