hkivancoral's picture
End of training
ea02dde
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_rms_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7720465890183028

smids_3x_deit_small_rms_001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6000
  • Accuracy: 0.7720

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1321 1.0 225 1.1948 0.4293
0.871 2.0 450 0.8948 0.5175
0.8008 3.0 675 0.7992 0.5408
0.8238 4.0 900 0.8283 0.5574
0.8152 5.0 1125 0.7604 0.6023
0.7386 6.0 1350 0.8796 0.5491
0.8772 7.0 1575 0.8860 0.5874
0.8376 8.0 1800 0.7510 0.6356
0.7551 9.0 2025 0.8017 0.6223
0.7343 10.0 2250 0.7106 0.6506
0.7921 11.0 2475 0.7927 0.6223
0.7457 12.0 2700 0.6623 0.6972
0.7029 13.0 2925 0.7255 0.6855
0.6991 14.0 3150 0.6397 0.7471
0.6797 15.0 3375 0.6573 0.6988
0.7545 16.0 3600 0.6382 0.7038
0.68 17.0 3825 0.6756 0.6805
0.624 18.0 4050 0.6219 0.7488
0.6708 19.0 4275 0.6554 0.7088
0.6335 20.0 4500 0.6777 0.6905
0.6626 21.0 4725 0.6194 0.7438
0.7083 22.0 4950 0.6072 0.7488
0.7252 23.0 5175 0.5921 0.7471
0.6519 24.0 5400 0.5775 0.7454
0.6375 25.0 5625 0.6257 0.7188
0.6035 26.0 5850 0.5599 0.7554
0.6072 27.0 6075 0.6182 0.7338
0.5614 28.0 6300 0.5694 0.7654
0.5851 29.0 6525 0.5778 0.7488
0.5267 30.0 6750 0.5678 0.7521
0.6187 31.0 6975 0.5810 0.7571
0.5995 32.0 7200 0.5883 0.7587
0.5524 33.0 7425 0.5665 0.7671
0.5635 34.0 7650 0.5545 0.7671
0.5514 35.0 7875 0.5682 0.7654
0.5935 36.0 8100 0.5461 0.7687
0.533 37.0 8325 0.5437 0.7820
0.4461 38.0 8550 0.5819 0.7571
0.4417 39.0 8775 0.5848 0.7554
0.4385 40.0 9000 0.5831 0.7754
0.4422 41.0 9225 0.6218 0.7504
0.5095 42.0 9450 0.5522 0.7787
0.4571 43.0 9675 0.5702 0.7854
0.4352 44.0 9900 0.5650 0.7920
0.4947 45.0 10125 0.6244 0.7504
0.4183 46.0 10350 0.5769 0.7754
0.4309 47.0 10575 0.5669 0.7820
0.441 48.0 10800 0.5895 0.7737
0.475 49.0 11025 0.5930 0.7704
0.4102 50.0 11250 0.6000 0.7720

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2