hkivancoral's picture
End of training
ef3088c
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_small_adamax_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.905

smids_10x_deit_small_adamax_001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9313
  • Accuracy: 0.905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3135 1.0 750 0.2998 0.8733
0.2768 2.0 1500 0.4449 0.8417
0.2302 3.0 2250 0.3152 0.885
0.1705 4.0 3000 0.4052 0.8717
0.1542 5.0 3750 0.3463 0.9017
0.1492 6.0 4500 0.3620 0.8967
0.0963 7.0 5250 0.3599 0.895
0.0922 8.0 6000 0.4809 0.8883
0.1185 9.0 6750 0.5269 0.9017
0.0382 10.0 7500 0.5699 0.8983
0.0415 11.0 8250 0.4670 0.9033
0.0358 12.0 9000 0.4714 0.9083
0.0301 13.0 9750 0.4780 0.915
0.0178 14.0 10500 0.5327 0.9033
0.0172 15.0 11250 0.6375 0.8983
0.0148 16.0 12000 0.5566 0.8967
0.0235 17.0 12750 0.5739 0.9067
0.0298 18.0 13500 0.7210 0.8983
0.0012 19.0 14250 0.7611 0.8883
0.0391 20.0 15000 0.8089 0.8917
0.0002 21.0 15750 0.6460 0.8983
0.0095 22.0 16500 0.6954 0.9067
0.0251 23.0 17250 0.6718 0.9017
0.0021 24.0 18000 0.6374 0.9067
0.0001 25.0 18750 0.6533 0.905
0.0001 26.0 19500 0.7022 0.91
0.003 27.0 20250 0.8113 0.9
0.0277 28.0 21000 0.7402 0.8983
0.0056 29.0 21750 0.7949 0.8967
0.007 30.0 22500 0.8055 0.8967
0.0001 31.0 23250 0.8426 0.9083
0.0 32.0 24000 0.8618 0.905
0.0 33.0 24750 0.8392 0.9083
0.0 34.0 25500 0.8019 0.9067
0.0 35.0 26250 0.8163 0.9067
0.0 36.0 27000 0.8994 0.895
0.0037 37.0 27750 0.8599 0.9067
0.0 38.0 28500 0.8721 0.905
0.0 39.0 29250 0.8612 0.9067
0.0 40.0 30000 0.9150 0.9033
0.0 41.0 30750 0.8804 0.91
0.0 42.0 31500 0.8814 0.9067
0.0 43.0 32250 0.8966 0.9083
0.0 44.0 33000 0.9028 0.9083
0.0 45.0 33750 0.9087 0.9083
0.0 46.0 34500 0.9131 0.9083
0.0 47.0 35250 0.9195 0.9067
0.0 48.0 36000 0.9269 0.9067
0.0 49.0 36750 0.9312 0.9067
0.0 50.0 37500 0.9313 0.905

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2