metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_10x_deit_small_adamax_001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8985024958402662
smids_10x_deit_small_adamax_001_fold2
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0087
- Accuracy: 0.8985
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3033 | 1.0 | 750 | 0.3519 | 0.8552 |
0.1821 | 2.0 | 1500 | 0.2712 | 0.9151 |
0.17 | 3.0 | 2250 | 0.2785 | 0.8985 |
0.2112 | 4.0 | 3000 | 0.3938 | 0.8735 |
0.1304 | 5.0 | 3750 | 0.4058 | 0.8719 |
0.1351 | 6.0 | 4500 | 0.3464 | 0.8835 |
0.0944 | 7.0 | 5250 | 0.4185 | 0.9018 |
0.08 | 8.0 | 6000 | 0.4321 | 0.9052 |
0.0621 | 9.0 | 6750 | 0.4755 | 0.8902 |
0.0267 | 10.0 | 7500 | 0.5448 | 0.8669 |
0.0347 | 11.0 | 8250 | 0.4694 | 0.8968 |
0.1206 | 12.0 | 9000 | 0.6302 | 0.8819 |
0.032 | 13.0 | 9750 | 0.6552 | 0.8819 |
0.0071 | 14.0 | 10500 | 0.5891 | 0.8869 |
0.0007 | 15.0 | 11250 | 0.6706 | 0.8935 |
0.0152 | 16.0 | 12000 | 0.6742 | 0.8852 |
0.0005 | 17.0 | 12750 | 0.6672 | 0.8952 |
0.0068 | 18.0 | 13500 | 0.7499 | 0.8885 |
0.0002 | 19.0 | 14250 | 0.7790 | 0.9018 |
0.0003 | 20.0 | 15000 | 0.7692 | 0.8835 |
0.0056 | 21.0 | 15750 | 0.8482 | 0.8752 |
0.0136 | 22.0 | 16500 | 0.8127 | 0.8835 |
0.0063 | 23.0 | 17250 | 0.6687 | 0.8952 |
0.0072 | 24.0 | 18000 | 0.8624 | 0.8869 |
0.0 | 25.0 | 18750 | 0.8382 | 0.8902 |
0.0001 | 26.0 | 19500 | 0.8780 | 0.8769 |
0.0107 | 27.0 | 20250 | 0.8313 | 0.8935 |
0.0 | 28.0 | 21000 | 0.9547 | 0.8869 |
0.0 | 29.0 | 21750 | 0.9878 | 0.8952 |
0.0 | 30.0 | 22500 | 0.8456 | 0.9035 |
0.0 | 31.0 | 23250 | 1.0397 | 0.8918 |
0.0 | 32.0 | 24000 | 0.9157 | 0.9018 |
0.0 | 33.0 | 24750 | 0.9451 | 0.9018 |
0.0 | 34.0 | 25500 | 0.9702 | 0.8985 |
0.0 | 35.0 | 26250 | 0.9002 | 0.9085 |
0.0 | 36.0 | 27000 | 0.9202 | 0.8985 |
0.004 | 37.0 | 27750 | 0.9200 | 0.8968 |
0.0 | 38.0 | 28500 | 0.9595 | 0.8968 |
0.0 | 39.0 | 29250 | 0.9656 | 0.9018 |
0.0 | 40.0 | 30000 | 0.9661 | 0.9018 |
0.0 | 41.0 | 30750 | 0.9523 | 0.9018 |
0.0 | 42.0 | 31500 | 0.9556 | 0.9002 |
0.0 | 43.0 | 32250 | 0.9641 | 0.8985 |
0.0 | 44.0 | 33000 | 0.9727 | 0.9002 |
0.0026 | 45.0 | 33750 | 0.9812 | 0.8985 |
0.0 | 46.0 | 34500 | 0.9958 | 0.8985 |
0.0 | 47.0 | 35250 | 0.9951 | 0.8985 |
0.0 | 48.0 | 36000 | 1.0005 | 0.8985 |
0.0 | 49.0 | 36750 | 1.0064 | 0.8985 |
0.0 | 50.0 | 37500 | 1.0087 | 0.8985 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2