hkivancoral's picture
End of training
7fffdec
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_small_adamax_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8718801996672213

smids_10x_deit_small_adamax_00001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1874
  • Accuracy: 0.8719

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2546 1.0 750 0.2964 0.8885
0.1392 2.0 1500 0.2964 0.8935
0.1051 3.0 2250 0.3173 0.8802
0.0797 4.0 3000 0.3716 0.8802
0.0803 5.0 3750 0.4496 0.8769
0.0599 6.0 4500 0.5455 0.8769
0.0367 7.0 5250 0.6753 0.8686
0.0203 8.0 6000 0.7402 0.8752
0.0136 9.0 6750 0.8455 0.8686
0.0001 10.0 7500 0.8969 0.8686
0.0056 11.0 8250 0.9305 0.8769
0.0002 12.0 9000 0.9474 0.8752
0.0 13.0 9750 0.9957 0.8785
0.0 14.0 10500 1.0123 0.8769
0.0001 15.0 11250 0.9720 0.8835
0.0001 16.0 12000 1.0684 0.8785
0.0003 17.0 12750 1.1079 0.8752
0.0 18.0 13500 1.0971 0.8752
0.0 19.0 14250 1.0987 0.8735
0.0 20.0 15000 1.1190 0.8769
0.0 21.0 15750 1.1376 0.8686
0.0049 22.0 16500 1.1379 0.8686
0.0014 23.0 17250 1.1542 0.8752
0.0 24.0 18000 1.1536 0.8735
0.0 25.0 18750 1.1721 0.8719
0.0 26.0 19500 1.1498 0.8719
0.01 27.0 20250 1.1595 0.8719
0.0 28.0 21000 1.1250 0.8785
0.0 29.0 21750 1.1514 0.8686
0.0 30.0 22500 1.1182 0.8735
0.0 31.0 23250 1.1637 0.8752
0.0 32.0 24000 1.1726 0.8735
0.0 33.0 24750 1.1697 0.8719
0.0 34.0 25500 1.1588 0.8752
0.0 35.0 26250 1.1653 0.8702
0.0 36.0 27000 1.1669 0.8719
0.0141 37.0 27750 1.1767 0.8719
0.0 38.0 28500 1.1781 0.8719
0.0 39.0 29250 1.1951 0.8702
0.0 40.0 30000 1.1887 0.8702
0.0 41.0 30750 1.1872 0.8702
0.0 42.0 31500 1.1896 0.8702
0.0 43.0 32250 1.1930 0.8702
0.0 44.0 33000 1.1942 0.8702
0.0056 45.0 33750 1.1902 0.8702
0.0 46.0 34500 1.1880 0.8702
0.0 47.0 35250 1.1877 0.8702
0.0 48.0 36000 1.1882 0.8702
0.0 49.0 36750 1.1884 0.8702
0.0 50.0 37500 1.1874 0.8719

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2