hkivancoral's picture
End of training
f53dc11
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_small_rms_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7804878048780488

hushem_40x_deit_small_rms_001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6080
  • Accuracy: 0.7805

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4202 1.0 220 1.3858 0.2439
1.4846 2.0 440 1.3050 0.3659
1.213 3.0 660 1.2527 0.3659
1.2436 4.0 880 1.2166 0.3659
1.1042 5.0 1100 1.0859 0.4878
1.1247 6.0 1320 1.0109 0.5854
1.1005 7.0 1540 1.0680 0.4634
1.0292 8.0 1760 0.9693 0.5366
0.9154 9.0 1980 1.0620 0.6829
0.8944 10.0 2200 0.7963 0.6585
0.9136 11.0 2420 1.0510 0.5854
0.8882 12.0 2640 0.9455 0.6098
0.8527 13.0 2860 0.7251 0.6098
0.7429 14.0 3080 0.7653 0.7805
0.6936 15.0 3300 0.7806 0.7561
0.7049 16.0 3520 1.3071 0.6585
0.6294 17.0 3740 0.5950 0.7561
0.6472 18.0 3960 0.4686 0.7561
0.6452 19.0 4180 0.5722 0.7561
0.5301 20.0 4400 0.8370 0.6341
0.5967 21.0 4620 0.5708 0.8537
0.4666 22.0 4840 0.3950 0.8293
0.5239 23.0 5060 0.5273 0.8049
0.5888 24.0 5280 0.4686 0.7561
0.5034 25.0 5500 0.5275 0.7561
0.5755 26.0 5720 0.4866 0.7805
0.5913 27.0 5940 0.8503 0.7805
0.405 28.0 6160 0.5132 0.8049
0.4508 29.0 6380 0.7683 0.7805
0.4334 30.0 6600 0.7092 0.8293
0.4219 31.0 6820 0.5130 0.7561
0.4182 32.0 7040 0.5153 0.8293
0.308 33.0 7260 0.5501 0.7561
0.3445 34.0 7480 0.6037 0.8049
0.2565 35.0 7700 0.5862 0.7805
0.2803 36.0 7920 0.7253 0.7805
0.3045 37.0 8140 0.9133 0.6829
0.2202 38.0 8360 0.8750 0.7073
0.222 39.0 8580 0.5361 0.7805
0.1816 40.0 8800 1.1395 0.7317
0.2213 41.0 9020 0.9746 0.7561
0.16 42.0 9240 1.0585 0.7317
0.1084 43.0 9460 0.8736 0.7073
0.1243 44.0 9680 1.1686 0.8049
0.1009 45.0 9900 0.9862 0.7561
0.096 46.0 10120 1.4994 0.6829
0.089 47.0 10340 1.4415 0.7561
0.0473 48.0 10560 1.6197 0.7805
0.0266 49.0 10780 1.5765 0.7805
0.0418 50.0 11000 1.6080 0.7805

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2