hkivancoral's picture
End of training
abb4ea9
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_adamax_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5952380952380952

hushem_1x_deit_small_adamax_001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1234
  • Accuracy: 0.5952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.5633 0.2381
1.7898 2.0 12 1.3816 0.2381
1.7898 3.0 18 1.3607 0.2619
1.4334 4.0 24 1.3501 0.2619
1.3732 5.0 30 1.3553 0.2381
1.3732 6.0 36 1.1841 0.4762
1.3036 7.0 42 1.0576 0.5952
1.3036 8.0 48 1.0689 0.5952
1.2142 9.0 54 1.2296 0.5
1.056 10.0 60 0.7879 0.6429
1.056 11.0 66 0.7199 0.7143
0.921 12.0 72 0.9775 0.6190
0.921 13.0 78 0.8809 0.5952
0.6456 14.0 84 1.0792 0.5476
0.6348 15.0 90 1.0335 0.6190
0.6348 16.0 96 1.7853 0.5714
0.4743 17.0 102 1.5872 0.5714
0.4743 18.0 108 2.0651 0.5
0.2408 19.0 114 2.8369 0.4762
0.2271 20.0 120 2.1149 0.6190
0.2271 21.0 126 1.5722 0.6190
0.3385 22.0 132 2.8555 0.5476
0.3385 23.0 138 2.2068 0.6667
0.0822 24.0 144 2.2969 0.6190
0.0932 25.0 150 1.8785 0.7143
0.0932 26.0 156 3.2275 0.5714
0.0807 27.0 162 2.8847 0.5952
0.0807 28.0 168 3.1184 0.5952
0.0424 29.0 174 2.4583 0.6190
0.0287 30.0 180 2.8305 0.5714
0.0287 31.0 186 3.5171 0.5476
0.0333 32.0 192 3.2119 0.5952
0.0333 33.0 198 2.9811 0.5952
0.0008 34.0 204 3.0451 0.5952
0.0004 35.0 210 3.0670 0.5952
0.0004 36.0 216 3.0857 0.5952
0.0003 37.0 222 3.1009 0.5952
0.0003 38.0 228 3.1113 0.5952
0.0003 39.0 234 3.1177 0.5952
0.0003 40.0 240 3.1213 0.5952
0.0003 41.0 246 3.1231 0.5952
0.0002 42.0 252 3.1234 0.5952
0.0002 43.0 258 3.1234 0.5952
0.0002 44.0 264 3.1234 0.5952
0.0002 45.0 270 3.1234 0.5952
0.0002 46.0 276 3.1234 0.5952
0.0002 47.0 282 3.1234 0.5952
0.0002 48.0 288 3.1234 0.5952
0.0002 49.0 294 3.1234 0.5952
0.0002 50.0 300 3.1234 0.5952

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1