TinyLlama-1.1B-intermediate-step-715k-1.5T finetuned using OpenAssistant/oasst_top1_2023-08-25 dataset.
SFT code: https://github.com/jzhang38/TinyLlama/tree/main/sft
Evaluation Results at: https://huggingface.co/datasets/open-llm-leaderboard/details_habanoz__tinyllama-oasst1-top1-instruct-full-lr1-5-v0.1_public/blob/main/results_2023-11-23T17-25-53.937618.json
Command used:
accelerate launch finetune.py \
--model_name_or_path TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T \
--output_dir ./output/1_5T_FT_lr1e-5_ep5_top1_2023-08-25 \
--logging_steps 10 \
--save_strategy epoch \
--data_seed 42 \
--save_total_limit 2 \
--evaluation_strategy epoch \
--eval_dataset_size 512 \
--max_eval_samples 1000 \
--per_device_eval_batch_size 1 \
--max_new_tokens 32 \
--dataloader_num_workers 3 \
--group_by_length=False \
--logging_strategy steps \
--remove_unused_columns False \
--do_train \
--do_eval \
--warmup_ratio 0.05 \
--lr_scheduler_type constant \
--dataset OpenAssistant/oasst_top1_2023-08-25 \
--dataset_format oasst1 \
--source_max_len 1 \
--target_max_len 1023 \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 8 \
--max_steps 0 \
--num_train_epochs 5 \
--learning_rate 1e-5 \
--adam_beta2 0.999 \
--max_grad_norm 1.0 \
--weight_decay 0.0 \
--seed 0 \
--trust_remote_code
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 35.58 |
AI2 Reasoning Challenge (25-Shot) | 32.85 |
HellaSwag (10-Shot) | 58.16 |
MMLU (5-Shot) | 25.96 |
TruthfulQA (0-shot) | 38.35 |
Winogrande (5-shot) | 57.70 |
GSM8k (5-shot) | 0.45 |
- Downloads last month
- 1,421
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for habanoz/tinyllama-oasst1-top1-instruct-full-lr1-5-v0.1
Dataset used to train habanoz/tinyllama-oasst1-top1-instruct-full-lr1-5-v0.1
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard32.850
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard58.160
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard25.960
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard38.350
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard57.700
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard0.450