bert_uncased_L-4_H-256_A-4_mnli
This model is a fine-tuned version of google/bert_uncased_L-4_H-256_A-4 on the GLUE MNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.5852
- Accuracy: 0.7652
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7878 | 1.0 | 1534 | 0.7087 | 0.7007 |
0.6683 | 2.0 | 3068 | 0.6437 | 0.7296 |
0.6112 | 3.0 | 4602 | 0.6204 | 0.7465 |
0.5683 | 4.0 | 6136 | 0.6099 | 0.7553 |
0.532 | 5.0 | 7670 | 0.6147 | 0.7572 |
0.4997 | 6.0 | 9204 | 0.6381 | 0.7552 |
0.4707 | 7.0 | 10738 | 0.6196 | 0.7588 |
0.4436 | 8.0 | 12272 | 0.6404 | 0.7589 |
0.4187 | 9.0 | 13806 | 0.6584 | 0.7608 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
- Downloads last month
- 106
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for gokulsrinivasagan/bert_uncased_L-4_H-256_A-4_mnli
Base model
google/bert_uncased_L-4_H-256_A-4