SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("gmunkhtur/finetuned_tdb_paraphrase-multilingual_mpnet_try1")
# Run inference
sentences = [
    'Үй олноор хөнөөх зэвсэг дэлгэрүүлэхийг санхүүжүүлэх нь юунд хохирол учруулдаг вэ?',
    'Үй олноор хөнөөх зэвсэг дэлгэрүүлэхийг санхүүжүүлэх гэдэг нь Монгол Улсын хууль тогтоомж, олон улсын гэрээгээр хориглосон цөмийн, химийн, биологийн эсвэл үйл олноор хөнөөх бүх төрлийн зэвсгийг үйлдвэрлэх, ашиглах, худалдах, худалдан авахад санхүүгийн дэмжлэг үзүүлэхийг хэлнэ. Үй олноор хөнөөх зэвсэг дэлгэрүүлэхийг санхүүжүүлэх нь олон улсын энх тайван, аюулгүй байдал, хүний амь нас, амьдрах орчинд асар их хохирол учруулдаг учраас энэ төрлийн гэмт хэргийг санхүүжүүлж болзошгүй мөнгөн хөрөнгийн шилжилт хөдөлгөөнийг илрүүлж, таслан зогсоох нь банкны хувьд маш чухал юм.\n\n**САНХҮҮГИЙН ГЭМТ ХЭРЭГ ГЭЖ ЮУ ВЭ?**\nЭнэ хэсэгт үй олноор хөнөөх зэвсэг дэлгэрүүлэхийг санхүүжүүлэх гэж юу болох, мөн санхүүгийн гэмт хэргийн тухай тодорхойлолтыг оруулсан байна.\n',
    'Тус банк нь Forbes Mongolia Women’s Summit 2022 форумд ерөнхий ивээн тэтгэгчээр ажиллаж, Шотланд улсын Эдинбургийн их сургуулийн оюутнуудтай хамтран "Ногоон" банк болох талаар судалгаа хийсэн. Visa International-тай хамтран ОУ-ын виза карт руу мөнгөн гуйвуулга илгээх Visa Direct болон Visa B2B үйлчилгээнүүдийг Монгол Улсын зах зээлд анхлан нэвтрүүлсэн. Britto Cup - 2022 хөл бөмбөгийн аварга шалгаруулах тэмцээнийг зохион байгуулж, Britto Эйнштэйн картыг зах зээлд нэвтрүүлсэн.\n\nХХБ нь Мооdу’s агентлагаас B2, Standard & Poor’s агентлагаас B+ зэрэглэлтэй бөгөөд хэтийн төлөв нь тогтвортой үнэлгээтэй. Ногоон зээлийн хөтөлбөртөө ОУ-н эдийн засгийн хамтын ажиллагааны банк (IВEC)-с 10 сая ам.долларын санхүүжилт татаж, Visa International байгууллагатай хамтын ажиллагаа эхэлсний 20 жилийн ойг тэмдэглэсэн. ОХУ-н тэргүүний банк болох Газпромбанктай "Хамтын ажиллагааны гэрээ” байгуулж, "Climate 30+ Ногоон Сэргэлтийн Хөтөлбөр”-ийг санаачлан хэрэгжүүлж байна.\nХХБ-ны 2022 оны үйл ажиллагаа, хамтын ажиллагаа, зээлжих зэрэглэл, ногоон хөтөлбөрүүдийн тухай.\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.4211
cosine_accuracy@3 0.664
cosine_accuracy@5 0.7566
cosine_accuracy@10 0.839
cosine_precision@1 0.4211
cosine_precision@3 0.2213
cosine_precision@5 0.1513
cosine_precision@10 0.0839
cosine_recall@1 0.4211
cosine_recall@3 0.664
cosine_recall@5 0.7566
cosine_recall@10 0.839
cosine_ndcg@10 0.6292
cosine_mrr@10 0.5619
cosine_map@100 0.5688

Training Details

Training Dataset

Unnamed Dataset

  • Size: 7,379 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 8 tokens
    • mean: 22.09 tokens
    • max: 94 tokens
    • min: 31 tokens
    • mean: 125.54 tokens
    • max: 128 tokens
  • Samples:
    sentence_0 sentence_1
    Жуниор багц хэдэн насны хүүхдэд зориулагдсан бэ? 20,000₮ -с дээш худалдан авалт бүрд буцаан олголттой бөгөөд сард олгох буцаан олголтын дээд хэмжээ 200,000₮

    Нэмэлт боломжууд:

    * VISA international байгууллагаас улирал тутамд зарлагдаж буй хөнгөлөлтийн талаарх дэлгэрэнгүй мэдээллийг ЭНДдарж авна уу.
    ### Жуниор багц 13-18 нас

    Дараах байгууллагуудын ХХБ-ны пос төхөөрөмж дээр уншуулснаар буцаан олголт эдлэх боломжтой.
    Кидс багцын хөнгөлөлт урамшууллын жагсаалтын дараа Жуниор багцын хөнгөлөлт урамшуулал эхэлж байна.
    Байгууллагын багцуудын давуу талуудад шимтгэл хураамж төлөхгүй байх зэрэг ордог уу? Монголын Худалдаа Хөгжлийн Банк байгууллагуудад зориулж төлбөр тооцооны үйлчилгээг багцалсан дөрвөн төрлийн багц бүтээгдэхүүн санал болгож байна. Эдгээр багцууд нь санхүүгийн хэрэгцээт үйлчилгээг нэг дор авах, байгууллагын хэрэглээнд тохирсон төрлийг сонгох, санхүүгийн гүйлгээнд зарцуулах цагийг хэмнэх, шимтгэл хураамж төлөхгүй байх зэрэг давуу талуудтай. Мөн санхүүгийн бүртгэл тооцоог хялбаршуулах, цахим банк руу шилжих, гүйлгээг цахимаар зайнаас шийдэх, цахим үйлчилгээг хөнгөлөлттэй нөхцөлөөр авах, санхүүгийн зөвлөх үйлчилгээ авах боломжуудыг олгодог.
    Энэ хэсэгт байгууллагын багц бүтээгдэхүүний гол санаа, давуу талуудыг тодорхойлсон.
    Хүүхдийн багц гэж юу вэ? # Хүүхдийн багц
    Таны хүүхдийн санхүүгийн хэрэгцээнд тохирсон үйлчилгээг нэг дор багтаасан
    Хүүхдийн санхүүгийн багцын тухай ерөнхий танилцуулга.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • max_grad_norm: 0.5
  • num_train_epochs: 6
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 0.5
  • num_train_epochs: 6
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss cosine_ndcg@10
0.2165 100 - 0.3404
0.4329 200 - 0.4114
0.6494 300 - 0.4478
0.8658 400 - 0.4694
1.0 462 - 0.4828
1.0823 500 4.6423 0.4881
1.2987 600 - 0.4977
1.5152 700 - 0.5052
1.7316 800 - 0.5121
1.9481 900 - 0.5282
2.0 924 - 0.5333
2.1645 1000 2.058 0.5302
2.3810 1100 - 0.5451
2.5974 1200 - 0.5474
2.8139 1300 - 0.5572
3.0 1386 - 0.5557
3.0303 1400 - 0.5625
3.2468 1500 1.2527 0.5680
3.4632 1600 - 0.5713
3.6797 1700 - 0.5724
3.8961 1800 - 0.5771
4.0 1848 - 0.5799
4.1126 1900 - 0.5781
4.3290 2000 0.8986 0.5817
4.5455 2100 - 0.5852
4.7619 2200 - 0.5896
4.9784 2300 - 0.5892
5.0 2310 - 0.5906
5.1948 2400 - 0.5908
5.4113 2500 0.607 0.5932
5.6277 2600 - 0.6003
5.8442 2700 - 0.6014
6.0 2772 - 0.6063
6.0606 2800 - 0.6017
6.2771 2900 - 0.6058
6.4935 3000 0.5394 0.6044
6.7100 3100 - 0.6093
6.9264 3200 - 0.6039
7.0 3234 - 0.6073
7.1429 3300 - 0.6093
7.3593 3400 - 0.6139
7.5758 3500 0.4472 0.6166
7.7922 3600 - 0.6182
8.0 3696 - 0.6221
8.0087 3700 - 0.6219
8.2251 3800 - 0.6208
8.4416 3900 - 0.6216
8.6580 4000 0.3292 0.6246
8.8745 4100 - 0.6243
9.0 4158 - 0.6256
9.0909 4200 - 0.6252
9.3074 4300 - 0.6255
9.5238 4400 - 0.6257
9.7403 4500 0.3338 0.6264
9.9567 4600 - 0.6271
10.0 4620 - 0.6271
0.2165 100 - 0.6265
0.4329 200 - 0.6276
0.6494 300 - 0.6209
0.8658 400 - 0.6228
1.0 462 - 0.6220
1.0823 500 0.2776 0.6192
1.2987 600 - 0.6207
1.5152 700 - 0.6176
1.7316 800 - 0.6194
1.9481 900 - 0.6243
2.0 924 - 0.6240
2.1645 1000 0.2046 0.6201
2.3810 1100 - 0.6260
2.5974 1200 - 0.6225
2.8139 1300 - 0.6268
3.0 1386 - 0.6240
3.0303 1400 - 0.6233
3.2468 1500 0.1656 0.6240
3.4632 1600 - 0.6248
3.6797 1700 - 0.6273
3.8961 1800 - 0.6243
4.0 1848 - 0.6292

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.2
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
2
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for gmunkhtur/finetuned_tdb_paraphrase-multilingual_mpnet_try1

Evaluation results