Fake-QRcode ControlNet
These are ControlNet checkpoints trained on runwayml/stable-diffusion-v1-5 to generate recognizable AIGC QRcode image.
Model Details
Details will be added soon...
Use with diffusers
See the snippet below for usage with diffusers:
import cv2
import numpy as np
import torch
import os, sys
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, AutoencoderKL, EulerAncestralDiscreteScheduler
from PIL import Image
controlnet = ControlNetModel.from_pretrained("ghoskno/Fake-Qrcode")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
generator = torch.manual_seed(412052000)
qrcode = cv2.imread('path_to_qrcode.png')
qrcode = cv2.resize(255 - qrcode, (1024, 1024))
image = pipe(
"Blooming chinese chrysanthemum, green leaves growing wantonly, flowers, Complex patterns on the border, Masterpiece Art, Beauty, 8K, Unreal Engine",
Image.fromarray(qrcode),
generator=generator,
num_inference_steps=37,
guidance_scale=7,
controlnet_conditioning_scale=1.85
).images[0]
Some examples
input qrcode image
prompt: Blooming chinese chrysanthemum, green leaves growing wantonly, flowers, Complex patterns on the border, Masterpiece Art, Beauty, 8K, Unreal Engine
![](/ghoskno/Fake-QRcode/resolve/main/1.jpg)
prompt: Plum blossoms in the snow, pink stamens, green leaves and branches growing wantonly, flowers, Complex patterns on the border, Masterpiece Art, Beauty, 8K, Unreal Engine
![](/ghoskno/Fake-QRcode/resolve/main/2.jpg)
Limitations and Bias
- No strict control by input prompt
- Sometimes generate confusion or generate unrecognizable QRcode images
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.