Text Generation
Transformers
Safetensors
mixtral
Mixture of Experts
frankenmoe
Merge
mergekit
lazymergekit
M4-ai/TinyMistral-248M-v2-cleaner
Locutusque/TinyMistral-248M-Instruct
jtatman/tinymistral-v2-pycoder-instuct-248m
Locutusque/TinyMistral-248M-v2-Instruct
Eval Results
text-generation-inference
Inference Endpoints
TinyMistral-248Mx4-MOE
TinyMistral-248Mx4-MOE is a Mixure of Experts (MoE) made with the following models using LazyMergekit:
- M4-ai/TinyMistral-248M-v2-cleaner
- Locutusque/TinyMistral-248M-Instruct
- jtatman/tinymistral-v2-pycoder-instuct-248m
- Locutusque/TinyMistral-248M-v2-Instruct
🧩 Configuration
base_model: Locutusque/TinyMistral-248M-v2-Instruct
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: M4-ai/TinyMistral-248M-v2-cleaner
positive_prompts:
- "versatile"
- "helpful"
- "factual"
- "integrated"
- "adaptive"
- "comprehensive"
- "balanced"
negative_prompts:
- "specialized"
- "narrow"
- "focused"
- "limited"
- "specific"
- source_model: Locutusque/TinyMistral-248M-Instruct
positive_prompts:
- "creative"
- "chat"
- "discuss"
- "culture"
- "world"
- "expressive"
- "detailed"
- "imaginative"
- "engaging"
negative_prompts:
- "sorry"
- "cannot"
- "factual"
- "concise"
- "straightforward"
- "objective"
- "dry"
- source_model: jtatman/tinymistral-v2-pycoder-instuct-248m
positive_prompts:
- "analytical"
- "accurate"
- "logical"
- "knowledgeable"
- "precise"
- "calculate"
- "compute"
- "solve"
- "work"
- "python"
- "javascript"
- "programming"
- "algorithm"
- "tell me"
- "assistant"
negative_prompts:
- "creative"
- "abstract"
- "imaginative"
- "artistic"
- "emotional"
- "mistake"
- "inaccurate"
- source_model: Locutusque/TinyMistral-248M-v2-Instruct
positive_prompts:
- "instructive"
- "clear"
- "directive"
- "helpful"
- "informative"
negative_prompts:
- "exploratory"
- "open-ended"
- "narrative"
- "speculative"
- "artistic"
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "222gate/TinyMistral-248Mx4-MOE"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 30.08 |
AI2 Reasoning Challenge (25-Shot) | 29.52 |
HellaSwag (10-Shot) | 25.71 |
MMLU (5-Shot) | 24.82 |
TruthfulQA (0-shot) | 48.66 |
Winogrande (5-shot) | 51.78 |
GSM8k (5-shot) | 0.00 |
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for gate369/TinyMistral-248Mx4-MOE-not-tuned-pls-help
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard29.520
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard25.710
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard24.820
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard48.660
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard51.780
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard0.000