Whisper openai-whisper-large-v3

This model is a fine-tuned version of openai/whisper-large-v3 on the llamadas ecu911 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2920
  • Wer: 110.7983

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5302 0.9993 378 0.3469 38.3939
0.2016 1.9987 756 0.2801 60.4543
0.1027 2.9980 1134 0.2752 55.1432
0.0542 4.0 1513 0.2670 93.7130
0.032 4.9993 1891 0.2619 87.6820
0.0196 5.9987 2269 0.2810 56.8069
0.0158 6.9980 2647 0.2645 101.6477
0.0125 8.0 3026 0.2896 79.0274
0.0122 8.9993 3404 0.2679 82.7708
0.0097 9.9934 3780 0.2920 110.7983

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for flima/openai-whisper-large-v3-fullFT-es_ecu911_martin_win30s

Finetuned
(387)
this model