Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +435 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +62 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:500000
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: shihab17/bangla-sentence-transformer
|
10 |
+
widget:
|
11 |
+
- source_sentence: বাকীদের ও গ্রেফতারের চেষ্টা চলছে।
|
12 |
+
sentences:
|
13 |
+
- বাকীদের ও গ্রেফতারের চেষ্টা চলছে।
|
14 |
+
- দুর্যোগ ব্যবস্থাপনা ও ত্রাণ বিষয়ক প্রতিমন্ত্রী ডা মো এনামুর রহমান বলেছেন, অন্যতম
|
15 |
+
দ্রুত বর্ধনশীল ও পৃথিবীর ঘন জনবসতিপূর্ণ শহরগুলোর একটি ঢাকা।
|
16 |
+
- গতকাল মিরপুর শেরে বাংলা স্টেডিয়ামে তিন ম্যাচ সিরিজের প্রথম ওয়ানডেতে পাকিস্তানকে
|
17 |
+
রানে হারিয়ে ইতিহাসের এক অচলায়তন ভেঙে দিলো বাংলাদেশ।
|
18 |
+
- source_sentence: সমুদ্র সৈকতসহ জেলার পর্যটন স্পটগুলো পর্যটকদের কোলাহলে নতুন করে
|
19 |
+
প্রাণচঞ্চল হয়ে উঠেছে।
|
20 |
+
sentences:
|
21 |
+
- সমুদ্র সৈকতসহ জেলার পর্যটন স্পটগুলো পর্যটকদের কোলাহলে নতুন করে প্রাণচঞ্চল হয়ে
|
22 |
+
উঠেছে।
|
23 |
+
- এভাবে তো মিডিয়া টিকতে পারে না।
|
24 |
+
- অবশ্য পৃথিবী ধ্বংসের আশঙ্কা এর আগেও বহুবার করা হয়েছে।
|
25 |
+
- source_sentence: সংক্ষিপ্ত স্কোর সিলেট থান্ডার ওভারে রনি , চার্লস , মিঠুন , মেন্ডিস
|
26 |
+
, মোসাদ্দেক , মিলন , নাঈম , নাভিন , নাজমুল , সান্তোকি , এবাদত রাসেল , তাইজুল ,
|
27 |
+
রাহী , কাপালি , বোপারা , রেজা এক ওভারেই নেই তিন উইকেট ক্রমাগত উইকেট পতণের মধ্যে
|
28 |
+
সিলেটকে আরেকটি ধাক্কা দিলেন ফরহাদ রেজা।
|
29 |
+
sentences:
|
30 |
+
- অনলাইন মার্কেটপ্লেস বিক্রয় ডট কম বিজয় দিবস উপলক্ষে আই লাভ বাংলাদেশ শীর্ষক একটি
|
31 |
+
গল্প রচনা প্রতিযোগিতার আয়োজন করেছে।
|
32 |
+
- সংক্ষিপ্ত স্কোর সিলেট থান্ডার ওভারে রনি , চার্লস , মিঠুন , মেন্ডিস , মোসাদ্দেক
|
33 |
+
, মিলন , নাঈম , নাভিন , নাজমুল , সান্তোকি , এবাদত রাসেল , তাইজুল , রাহী , কাপালি
|
34 |
+
, বোপারা , রেজা এক ওভারেই নেই তিন উইকেট ক্রমাগত উইকেট পতণের মধ্যে সিলেটকে আরেকটি
|
35 |
+
ধাক্কা দিলেন ফরহাদ রেজা।
|
36 |
+
- ডায়ানা অ্যাওয়ার্ড এর বিজয়ীদের জুলাই প্রিন্সেস ডায়ানার তম জন্মদিনে ঘোষণা করা
|
37 |
+
হয়েছিল।
|
38 |
+
- source_sentence: এটা তো আমাদের জন্য ভালো খবর।
|
39 |
+
sentences:
|
40 |
+
- বায়ার গ্রুপ ইন্ডিয়ার ভাইস চেয়ারম্যান ও ব্যবস্থাপনা পরিচালক রিচার্ড ভ্যান ডার
|
41 |
+
মারওই বাংলাদেশের ব্যবসায়িক কার্যক্রমের প্রশংসা করে আগামীতে আরো প্রবৃদ্ধি অর্জনের
|
42 |
+
জন্য সকলকে একযোগে কাজ করার আহ্বান জানান।
|
43 |
+
- শুধু লাদাখ বা গলওয়ান উপত্যকা নয়, ভারত চীন সীমান্তের পুরো এলাকাতেই তিন বাহিনীকে
|
44 |
+
এই কড়া অবস্থান নেয়ার নির্দেশ দিয়েছেন দেশটির প্রতিরক্ষা মন্ত্রী।
|
45 |
+
- এটা তো আমাদের জন্য ভ��লো খবর।
|
46 |
+
- source_sentence: প্রথম বিশ্বযুদ্ধে যুক্তরাষ্ট্রের নাগরিকদের মৃত্যুর চেয়েও এই সংখ্যাটা
|
47 |
+
বেশি।
|
48 |
+
sentences:
|
49 |
+
- প্রথম বিশ্বযুদ্ধে যুক্তরাষ্ট্রের নাগরিকদের মৃত্যুর চেয়েও এই সংখ্যাটা বেশি।
|
50 |
+
- সিরীয় প্রেসিডেন্ট বাশার আল আসাদ এ সম্প্রদায়েরই লোক।
|
51 |
+
- রবিবার রাজস্ব ভবন সভাকক্ষে জাতীয় রাজস্ব বোর্ডের এনবিআর সঙ্গে প্রাক বাজেট আলোচনায়
|
52 |
+
বাংলাদেশ ট্যানারি এসোসিয়েশনের সভাপতি শাহীন আহমেদ বলেন, সাভারের চামড়া শিল্প নগরী
|
53 |
+
স্থাপনের আগে উদ্যোক্তাদের বলা হয়েছিল, কর অবকাশ সুবিধা দেয়া হবে।
|
54 |
+
pipeline_tag: sentence-similarity
|
55 |
+
library_name: sentence-transformers
|
56 |
+
---
|
57 |
+
|
58 |
+
# SentenceTransformer based on shihab17/bangla-sentence-transformer
|
59 |
+
|
60 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [shihab17/bangla-sentence-transformer](https://huggingface.co/shihab17/bangla-sentence-transformer). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
61 |
+
|
62 |
+
## Model Details
|
63 |
+
|
64 |
+
### Model Description
|
65 |
+
- **Model Type:** Sentence Transformer
|
66 |
+
- **Base model:** [shihab17/bangla-sentence-transformer](https://huggingface.co/shihab17/bangla-sentence-transformer) <!-- at revision ab250a2c767638562cd3caa8c0017b106a481755 -->
|
67 |
+
- **Maximum Sequence Length:** 512 tokens
|
68 |
+
- **Output Dimensionality:** 768 dimensions
|
69 |
+
- **Similarity Function:** Cosine Similarity
|
70 |
+
<!-- - **Training Dataset:** Unknown -->
|
71 |
+
<!-- - **Language:** Unknown -->
|
72 |
+
<!-- - **License:** Unknown -->
|
73 |
+
|
74 |
+
### Model Sources
|
75 |
+
|
76 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
77 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
78 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
79 |
+
|
80 |
+
### Full Model Architecture
|
81 |
+
|
82 |
+
```
|
83 |
+
SentenceTransformer(
|
84 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
85 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
86 |
+
)
|
87 |
+
```
|
88 |
+
|
89 |
+
## Usage
|
90 |
+
|
91 |
+
### Direct Usage (Sentence Transformers)
|
92 |
+
|
93 |
+
First install the Sentence Transformers library:
|
94 |
+
|
95 |
+
```bash
|
96 |
+
pip install -U sentence-transformers
|
97 |
+
```
|
98 |
+
|
99 |
+
Then you can load this model and run inference.
|
100 |
+
```python
|
101 |
+
from sentence_transformers import SentenceTransformer
|
102 |
+
|
103 |
+
# Download from the 🤗 Hub
|
104 |
+
model = SentenceTransformer("farhana1996/bangla-unsup-simcse")
|
105 |
+
# Run inference
|
106 |
+
sentences = [
|
107 |
+
'প্রথম বিশ্বযুদ্ধে যুক্তরাষ্ট্রের নাগরিকদের মৃত্যুর চেয়েও এই সংখ্যাটা বেশি।',
|
108 |
+
'প্রথম বিশ্বযুদ্ধে যুক্তরাষ্ট্রের নাগরিকদের মৃত্যুর চেয়েও এই সংখ্যাটা বেশি।',
|
109 |
+
'রবিবার রাজস্ব ভবন সভাকক্ষে জাতীয় রাজস্ব বোর্ডের এনবিআর সঙ্গে প্রাক বাজেট আলোচনায় বাংলাদেশ ট্যানারি এসোসিয়েশনের সভাপতি শাহীন আহমেদ বলেন, সাভারের চামড়া শিল্প নগরী স্থাপনের আগে উদ্যোক্তাদের বলা হয়েছিল, কর অবকাশ সুবিধা দেয়া হবে।',
|
110 |
+
]
|
111 |
+
embeddings = model.encode(sentences)
|
112 |
+
print(embeddings.shape)
|
113 |
+
# [3, 768]
|
114 |
+
|
115 |
+
# Get the similarity scores for the embeddings
|
116 |
+
similarities = model.similarity(embeddings, embeddings)
|
117 |
+
print(similarities.shape)
|
118 |
+
# [3, 3]
|
119 |
+
```
|
120 |
+
|
121 |
+
<!--
|
122 |
+
### Direct Usage (Transformers)
|
123 |
+
|
124 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
125 |
+
|
126 |
+
</details>
|
127 |
+
-->
|
128 |
+
|
129 |
+
<!--
|
130 |
+
### Downstream Usage (Sentence Transformers)
|
131 |
+
|
132 |
+
You can finetune this model on your own dataset.
|
133 |
+
|
134 |
+
<details><summary>Click to expand</summary>
|
135 |
+
|
136 |
+
</details>
|
137 |
+
-->
|
138 |
+
|
139 |
+
<!--
|
140 |
+
### Out-of-Scope Use
|
141 |
+
|
142 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
143 |
+
-->
|
144 |
+
|
145 |
+
<!--
|
146 |
+
## Bias, Risks and Limitations
|
147 |
+
|
148 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
149 |
+
-->
|
150 |
+
|
151 |
+
<!--
|
152 |
+
### Recommendations
|
153 |
+
|
154 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
155 |
+
-->
|
156 |
+
|
157 |
+
## Training Details
|
158 |
+
|
159 |
+
### Training Dataset
|
160 |
+
|
161 |
+
#### Unnamed Dataset
|
162 |
+
|
163 |
+
|
164 |
+
* Size: 500,000 training samples
|
165 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
166 |
+
* Approximate statistics based on the first 1000 samples:
|
167 |
+
| | sentence_0 | sentence_1 |
|
168 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
169 |
+
| type | string | string |
|
170 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 27.75 tokens</li><li>max: 383 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 27.75 tokens</li><li>max: 383 tokens</li></ul> |
|
171 |
+
* Samples:
|
172 |
+
| sentence_0 | sentence_1 |
|
173 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------|
|
174 |
+
| <code>তার অন্তঃসত্ত্বা বোন ও মা বাবাকেও মারধর করা হয় বলে অভিযোগ।</code> | <code>তার অন্তঃসত্ত্বা বোন ও মা বাবাকেও মারধর করা হয় বলে অভিযোগ।</code> |
|
175 |
+
| <code>ডিজিটাল প্রযুক্তি ব্যবহারের মাধ্যমে দেশের প্রান্তিক পর্যায়েও আর্থিক সেবা নিশ্চিত করতে নীতিগত সহায়তা প্রদান করছে সরকার।</code> | <code>ডিজিটাল প্রযুক্তি ব্যবহারের মাধ্যমে দেশের প্রান্তিক পর্যায়েও আর্থিক সেবা নিশ্চিত করতে নীতিগত সহায়তা প্রদান করছে সরকার।</code> |
|
176 |
+
| <code>পরে এটি ইলেক্টোরাল কলেজ হিসেবে পরিচিত হয়ে ওঠে।</code> | <code>পরে এটি ইলেক্টোরাল কলেজ হিসেবে পরিচিত হয়ে ওঠে।</code> |
|
177 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
178 |
+
```json
|
179 |
+
{
|
180 |
+
"scale": 20.0,
|
181 |
+
"similarity_fct": "cos_sim"
|
182 |
+
}
|
183 |
+
```
|
184 |
+
|
185 |
+
### Training Hyperparameters
|
186 |
+
#### Non-Default Hyperparameters
|
187 |
+
|
188 |
+
- `per_device_train_batch_size`: 16
|
189 |
+
- `per_device_eval_batch_size`: 16
|
190 |
+
- `num_train_epochs`: 1
|
191 |
+
- `multi_dataset_batch_sampler`: round_robin
|
192 |
+
|
193 |
+
#### All Hyperparameters
|
194 |
+
<details><summary>Click to expand</summary>
|
195 |
+
|
196 |
+
- `overwrite_output_dir`: False
|
197 |
+
- `do_predict`: False
|
198 |
+
- `eval_strategy`: no
|
199 |
+
- `prediction_loss_only`: True
|
200 |
+
- `per_device_train_batch_size`: 16
|
201 |
+
- `per_device_eval_batch_size`: 16
|
202 |
+
- `per_gpu_train_batch_size`: None
|
203 |
+
- `per_gpu_eval_batch_size`: None
|
204 |
+
- `gradient_accumulation_steps`: 1
|
205 |
+
- `eval_accumulation_steps`: None
|
206 |
+
- `torch_empty_cache_steps`: None
|
207 |
+
- `learning_rate`: 5e-05
|
208 |
+
- `weight_decay`: 0.0
|
209 |
+
- `adam_beta1`: 0.9
|
210 |
+
- `adam_beta2`: 0.999
|
211 |
+
- `adam_epsilon`: 1e-08
|
212 |
+
- `max_grad_norm`: 1
|
213 |
+
- `num_train_epochs`: 1
|
214 |
+
- `max_steps`: -1
|
215 |
+
- `lr_scheduler_type`: linear
|
216 |
+
- `lr_scheduler_kwargs`: {}
|
217 |
+
- `warmup_ratio`: 0.0
|
218 |
+
- `warmup_steps`: 0
|
219 |
+
- `log_level`: passive
|
220 |
+
- `log_level_replica`: warning
|
221 |
+
- `log_on_each_node`: True
|
222 |
+
- `logging_nan_inf_filter`: True
|
223 |
+
- `save_safetensors`: True
|
224 |
+
- `save_on_each_node`: False
|
225 |
+
- `save_only_model`: False
|
226 |
+
- `restore_callback_states_from_checkpoint`: False
|
227 |
+
- `no_cuda`: False
|
228 |
+
- `use_cpu`: False
|
229 |
+
- `use_mps_device`: False
|
230 |
+
- `seed`: 42
|
231 |
+
- `data_seed`: None
|
232 |
+
- `jit_mode_eval`: False
|
233 |
+
- `use_ipex`: False
|
234 |
+
- `bf16`: False
|
235 |
+
- `fp16`: False
|
236 |
+
- `fp16_opt_level`: O1
|
237 |
+
- `half_precision_backend`: auto
|
238 |
+
- `bf16_full_eval`: False
|
239 |
+
- `fp16_full_eval`: False
|
240 |
+
- `tf32`: None
|
241 |
+
- `local_rank`: 0
|
242 |
+
- `ddp_backend`: None
|
243 |
+
- `tpu_num_cores`: None
|
244 |
+
- `tpu_metrics_debug`: False
|
245 |
+
- `debug`: []
|
246 |
+
- `dataloader_drop_last`: False
|
247 |
+
- `dataloader_num_workers`: 0
|
248 |
+
- `dataloader_prefetch_factor`: None
|
249 |
+
- `past_index`: -1
|
250 |
+
- `disable_tqdm`: False
|
251 |
+
- `remove_unused_columns`: True
|
252 |
+
- `label_names`: None
|
253 |
+
- `load_best_model_at_end`: False
|
254 |
+
- `ignore_data_skip`: False
|
255 |
+
- `fsdp`: []
|
256 |
+
- `fsdp_min_num_params`: 0
|
257 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
258 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
259 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
260 |
+
- `deepspeed`: None
|
261 |
+
- `label_smoothing_factor`: 0.0
|
262 |
+
- `optim`: adamw_torch
|
263 |
+
- `optim_args`: None
|
264 |
+
- `adafactor`: False
|
265 |
+
- `group_by_length`: False
|
266 |
+
- `length_column_name`: length
|
267 |
+
- `ddp_find_unused_parameters`: None
|
268 |
+
- `ddp_bucket_cap_mb`: None
|
269 |
+
- `ddp_broadcast_buffers`: False
|
270 |
+
- `dataloader_pin_memory`: True
|
271 |
+
- `dataloader_persistent_workers`: False
|
272 |
+
- `skip_memory_metrics`: True
|
273 |
+
- `use_legacy_prediction_loop`: False
|
274 |
+
- `push_to_hub`: False
|
275 |
+
- `resume_from_checkpoint`: None
|
276 |
+
- `hub_model_id`: None
|
277 |
+
- `hub_strategy`: every_save
|
278 |
+
- `hub_private_repo`: None
|
279 |
+
- `hub_always_push`: False
|
280 |
+
- `gradient_checkpointing`: False
|
281 |
+
- `gradient_checkpointing_kwargs`: None
|
282 |
+
- `include_inputs_for_metrics`: False
|
283 |
+
- `include_for_metrics`: []
|
284 |
+
- `eval_do_concat_batches`: True
|
285 |
+
- `fp16_backend`: auto
|
286 |
+
- `push_to_hub_model_id`: None
|
287 |
+
- `push_to_hub_organization`: None
|
288 |
+
- `mp_parameters`:
|
289 |
+
- `auto_find_batch_size`: False
|
290 |
+
- `full_determinism`: False
|
291 |
+
- `torchdynamo`: None
|
292 |
+
- `ray_scope`: last
|
293 |
+
- `ddp_timeout`: 1800
|
294 |
+
- `torch_compile`: False
|
295 |
+
- `torch_compile_backend`: None
|
296 |
+
- `torch_compile_mode`: None
|
297 |
+
- `dispatch_batches`: None
|
298 |
+
- `split_batches`: None
|
299 |
+
- `include_tokens_per_second`: False
|
300 |
+
- `include_num_input_tokens_seen`: False
|
301 |
+
- `neftune_noise_alpha`: None
|
302 |
+
- `optim_target_modules`: None
|
303 |
+
- `batch_eval_metrics`: False
|
304 |
+
- `eval_on_start`: False
|
305 |
+
- `use_liger_kernel`: False
|
306 |
+
- `eval_use_gather_object`: False
|
307 |
+
- `average_tokens_across_devices`: False
|
308 |
+
- `prompts`: None
|
309 |
+
- `batch_sampler`: batch_sampler
|
310 |
+
- `multi_dataset_batch_sampler`: round_robin
|
311 |
+
|
312 |
+
</details>
|
313 |
+
|
314 |
+
### Training Logs
|
315 |
+
| Epoch | Step | Training Loss |
|
316 |
+
|:-----:|:-----:|:-------------:|
|
317 |
+
| 0.016 | 500 | 0.1576 |
|
318 |
+
| 0.032 | 1000 | 0.0004 |
|
319 |
+
| 0.048 | 1500 | 0.0003 |
|
320 |
+
| 0.064 | 2000 | 0.0002 |
|
321 |
+
| 0.08 | 2500 | 0.0002 |
|
322 |
+
| 0.096 | 3000 | 0.0001 |
|
323 |
+
| 0.112 | 3500 | 0.0002 |
|
324 |
+
| 0.128 | 4000 | 0.0001 |
|
325 |
+
| 0.144 | 4500 | 0.0001 |
|
326 |
+
| 0.16 | 5000 | 0.0 |
|
327 |
+
| 0.176 | 5500 | 0.0001 |
|
328 |
+
| 0.192 | 6000 | 0.0001 |
|
329 |
+
| 0.208 | 6500 | 0.0001 |
|
330 |
+
| 0.224 | 7000 | 0.0001 |
|
331 |
+
| 0.24 | 7500 | 0.0001 |
|
332 |
+
| 0.256 | 8000 | 0.0 |
|
333 |
+
| 0.272 | 8500 | 0.0002 |
|
334 |
+
| 0.288 | 9000 | 0.0002 |
|
335 |
+
| 0.304 | 9500 | 0.0002 |
|
336 |
+
| 0.32 | 10000 | 0.0 |
|
337 |
+
| 0.336 | 10500 | 0.0 |
|
338 |
+
| 0.352 | 11000 | 0.0 |
|
339 |
+
| 0.368 | 11500 | 0.0 |
|
340 |
+
| 0.384 | 12000 | 0.0 |
|
341 |
+
| 0.4 | 12500 | 0.0002 |
|
342 |
+
| 0.416 | 13000 | 0.0002 |
|
343 |
+
| 0.432 | 13500 | 0.0001 |
|
344 |
+
| 0.448 | 14000 | 0.0 |
|
345 |
+
| 0.464 | 14500 | 0.0 |
|
346 |
+
| 0.48 | 15000 | 0.0003 |
|
347 |
+
| 0.496 | 15500 | 0.0 |
|
348 |
+
| 0.512 | 16000 | 0.0 |
|
349 |
+
| 0.528 | 16500 | 0.0002 |
|
350 |
+
| 0.544 | 17000 | 0.0001 |
|
351 |
+
| 0.56 | 17500 | 0.0 |
|
352 |
+
| 0.576 | 18000 | 0.0001 |
|
353 |
+
| 0.592 | 18500 | 0.0 |
|
354 |
+
| 0.608 | 19000 | 0.0 |
|
355 |
+
| 0.624 | 19500 | 0.0005 |
|
356 |
+
| 0.64 | 20000 | 0.0 |
|
357 |
+
| 0.656 | 20500 | 0.0 |
|
358 |
+
| 0.672 | 21000 | 0.0 |
|
359 |
+
| 0.688 | 21500 | 0.0 |
|
360 |
+
| 0.704 | 22000 | 0.0 |
|
361 |
+
| 0.72 | 22500 | 0.0 |
|
362 |
+
| 0.736 | 23000 | 0.0002 |
|
363 |
+
| 0.752 | 23500 | 0.0002 |
|
364 |
+
| 0.768 | 24000 | 0.0 |
|
365 |
+
| 0.784 | 24500 | 0.0 |
|
366 |
+
| 0.8 | 25000 | 0.0 |
|
367 |
+
| 0.816 | 25500 | 0.0 |
|
368 |
+
| 0.832 | 26000 | 0.0 |
|
369 |
+
| 0.848 | 26500 | 0.0 |
|
370 |
+
| 0.864 | 27000 | 0.0 |
|
371 |
+
| 0.88 | 27500 | 0.0 |
|
372 |
+
| 0.896 | 28000 | 0.0 |
|
373 |
+
| 0.912 | 28500 | 0.0002 |
|
374 |
+
| 0.928 | 29000 | 0.0 |
|
375 |
+
| 0.944 | 29500 | 0.0 |
|
376 |
+
| 0.96 | 30000 | 0.0002 |
|
377 |
+
| 0.976 | 30500 | 0.0 |
|
378 |
+
| 0.992 | 31000 | 0.0004 |
|
379 |
+
|
380 |
+
|
381 |
+
### Framework Versions
|
382 |
+
- Python: 3.10.12
|
383 |
+
- Sentence Transformers: 3.3.1
|
384 |
+
- Transformers: 4.47.0
|
385 |
+
- PyTorch: 2.5.1+cu121
|
386 |
+
- Accelerate: 1.2.1
|
387 |
+
- Datasets: 3.2.0
|
388 |
+
- Tokenizers: 0.21.0
|
389 |
+
|
390 |
+
## Citation
|
391 |
+
|
392 |
+
### BibTeX
|
393 |
+
|
394 |
+
#### Sentence Transformers
|
395 |
+
```bibtex
|
396 |
+
@inproceedings{reimers-2019-sentence-bert,
|
397 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
398 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
399 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
400 |
+
month = "11",
|
401 |
+
year = "2019",
|
402 |
+
publisher = "Association for Computational Linguistics",
|
403 |
+
url = "https://arxiv.org/abs/1908.10084",
|
404 |
+
}
|
405 |
+
```
|
406 |
+
|
407 |
+
#### MultipleNegativesRankingLoss
|
408 |
+
```bibtex
|
409 |
+
@misc{henderson2017efficient,
|
410 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
411 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
412 |
+
year={2017},
|
413 |
+
eprint={1705.00652},
|
414 |
+
archivePrefix={arXiv},
|
415 |
+
primaryClass={cs.CL}
|
416 |
+
}
|
417 |
+
```
|
418 |
+
|
419 |
+
<!--
|
420 |
+
## Glossary
|
421 |
+
|
422 |
+
*Clearly define terms in order to be accessible across audiences.*
|
423 |
+
-->
|
424 |
+
|
425 |
+
<!--
|
426 |
+
## Model Card Authors
|
427 |
+
|
428 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
429 |
+
-->
|
430 |
+
|
431 |
+
<!--
|
432 |
+
## Model Card Contact
|
433 |
+
|
434 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
435 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "shihab17/bangla-sentence-transformer",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.47.0",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.0",
|
5 |
+
"pytorch": "2.5.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7536b8abea1215ee8e4179f6f4aa5c3a2fa8001fddcb19075c06b53c76a49805
|
3 |
+
size 1112197096
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"max_length": 128,
|
51 |
+
"model_max_length": 512,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "</s>",
|
57 |
+
"stride": 0,
|
58 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "<unk>"
|
62 |
+
}
|