SentenceTransformer based on shihab17/bangla-sentence-transformer
This is a sentence-transformers model finetuned from shihab17/bangla-sentence-transformer. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: shihab17/bangla-sentence-transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("farhana1996/bangla-unsup-simcse")
# Run inference
sentences = [
'প্রথম বিশ্বযুদ্ধে যুক্তরাষ্ট্রের নাগরিকদের মৃত্যুর চেয়েও এই সংখ্যাটা বেশি।',
'প্রথম বিশ্বযুদ্ধে যুক্তরাষ্ট্রের নাগরিকদের মৃত্যুর চেয়েও এই সংখ্যাটা বেশি।',
'রবিবার রাজস্ব ভবন সভাকক্ষে জাতীয় রাজস্ব বোর্ডের এনবিআর সঙ্গে প্রাক বাজেট আলোচনায় বাংলাদেশ ট্যানারি এসোসিয়েশনের সভাপতি শাহীন আহমেদ বলেন, সাভারের চামড়া শিল্প নগরী স্থাপনের আগে উদ্যোক্তাদের বলা হয়েছিল, কর অবকাশ সুবিধা দেয়া হবে।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 500,000 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 4 tokens
- mean: 27.75 tokens
- max: 383 tokens
- min: 4 tokens
- mean: 27.75 tokens
- max: 383 tokens
- Samples:
sentence_0 sentence_1 তার অন্তঃসত্ত্বা বোন ও মা বাবাকেও মারধর করা হয় বলে অভিযোগ।
তার অন্তঃসত্ত্বা বোন ও মা বাবাকেও মারধর করা হয় বলে অভিযোগ।
ডিজিটাল প্রযুক্তি ব্যবহারের মাধ্যমে দেশের প্রান্তিক পর্যায়েও আর্থিক সেবা নিশ্চিত করতে নীতিগত সহায়তা প্রদান করছে সরকার।
ডিজিটাল প্রযুক্তি ব্যবহারের মাধ্যমে দেশের প্রান্তিক পর্যায়েও আর্থিক সেবা নিশ্চিত করতে নীতিগত সহায়তা প্রদান করছে সরকার।
পরে এটি ইলেক্টোরাল কলেজ হিসেবে পরিচিত হয়ে ওঠে।
পরে এটি ইলেক্টোরাল কলেজ হিসেবে পরিচিত হয়ে ওঠে।
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.016 | 500 | 0.1576 |
0.032 | 1000 | 0.0004 |
0.048 | 1500 | 0.0003 |
0.064 | 2000 | 0.0002 |
0.08 | 2500 | 0.0002 |
0.096 | 3000 | 0.0001 |
0.112 | 3500 | 0.0002 |
0.128 | 4000 | 0.0001 |
0.144 | 4500 | 0.0001 |
0.16 | 5000 | 0.0 |
0.176 | 5500 | 0.0001 |
0.192 | 6000 | 0.0001 |
0.208 | 6500 | 0.0001 |
0.224 | 7000 | 0.0001 |
0.24 | 7500 | 0.0001 |
0.256 | 8000 | 0.0 |
0.272 | 8500 | 0.0002 |
0.288 | 9000 | 0.0002 |
0.304 | 9500 | 0.0002 |
0.32 | 10000 | 0.0 |
0.336 | 10500 | 0.0 |
0.352 | 11000 | 0.0 |
0.368 | 11500 | 0.0 |
0.384 | 12000 | 0.0 |
0.4 | 12500 | 0.0002 |
0.416 | 13000 | 0.0002 |
0.432 | 13500 | 0.0001 |
0.448 | 14000 | 0.0 |
0.464 | 14500 | 0.0 |
0.48 | 15000 | 0.0003 |
0.496 | 15500 | 0.0 |
0.512 | 16000 | 0.0 |
0.528 | 16500 | 0.0002 |
0.544 | 17000 | 0.0001 |
0.56 | 17500 | 0.0 |
0.576 | 18000 | 0.0001 |
0.592 | 18500 | 0.0 |
0.608 | 19000 | 0.0 |
0.624 | 19500 | 0.0005 |
0.64 | 20000 | 0.0 |
0.656 | 20500 | 0.0 |
0.672 | 21000 | 0.0 |
0.688 | 21500 | 0.0 |
0.704 | 22000 | 0.0 |
0.72 | 22500 | 0.0 |
0.736 | 23000 | 0.0002 |
0.752 | 23500 | 0.0002 |
0.768 | 24000 | 0.0 |
0.784 | 24500 | 0.0 |
0.8 | 25000 | 0.0 |
0.816 | 25500 | 0.0 |
0.832 | 26000 | 0.0 |
0.848 | 26500 | 0.0 |
0.864 | 27000 | 0.0 |
0.88 | 27500 | 0.0 |
0.896 | 28000 | 0.0 |
0.912 | 28500 | 0.0002 |
0.928 | 29000 | 0.0 |
0.944 | 29500 | 0.0 |
0.96 | 30000 | 0.0002 |
0.976 | 30500 | 0.0 |
0.992 | 31000 | 0.0004 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for farhana1996/bangla-unsup-simcse
Base model
shihab17/bangla-sentence-transformer