ethanteh commited on
Commit
11961bc
·
verified ·
1 Parent(s): 206c632

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,740 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:6300
11
+ - loss:MatryoshkaLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: BAAI/bge-base-en-v1.5
14
+ widget:
15
+ - source_sentence: For example, brands based on major motion picture releases generally
16
+ require less advertising as a result of the promotional activities around the
17
+ motion picture release.
18
+ sentences:
19
+ - How many new hotels did Hilton open in the year ended December 31, 2023?
20
+ - What impact do major motion picture releases have on Hasbro's advertising expenditures?
21
+ - In which item of the report can the details of Legal proceedings be found by referencing?
22
+ - source_sentence: Our retail stores are generally located in strip centers, shopping
23
+ malls and pedestrian areas... We target strip centers that are conveniently located,
24
+ have a mass merchant or supermarket anchor tenant and have a high volume of customers.
25
+ sentences:
26
+ - What is the range of pages in IBM’s 2023 Annual Report to Stockholders where the
27
+ Financial Statements and Supplementary Data are located?
28
+ - How does GameStop's store location choice impact its business strategy?
29
+ - In which part of the financial documents can detailed information about legal
30
+ proceedings be found according to Item 3?
31
+ - source_sentence: The increase in fulfillment costs in absolute dollars in 2023,
32
+ compared to the prior year, is primarily due to increased sales and investments
33
+ in our fulfillment network, partially offset by fulfillment network efficiencies.
34
+ sentences:
35
+ - What led to the increase in fulfillment costs in 2023?
36
+ - Where in the Form 10-K can one find Note 15 which discusses legal proceedings?
37
+ - What accounting method does the company use to account for investments in subsidiaries
38
+ and partnerships where it does not control but has significant influence?
39
+ - source_sentence: 'In December 2023, the FASB issued ASU No. 2023-09, ‘Income Taxes
40
+ (Topic 740): Improvements to Income Tax Disclosures.’ The ASU includes amendments
41
+ requiring enhanced income tax disclosures, primarily related to standardization
42
+ and disaggregation of rate reconciliation categories and income taxes paid by
43
+ jurisdiction.'
44
+ sentences:
45
+ - What are the total noncancelable purchase commitments as of December 31, 2023,
46
+ and how are they distributed over different time periods?
47
+ - What are the primary objectives of the Company's investment policy?
48
+ - What are the required amendments in the ASU No. 2023-09 regarding income tax disclosures?
49
+ - source_sentence: Income Taxes We are subject to income taxes in the U.S. and in
50
+ many foreign jurisdictions. Significant judgment is required in determining our
51
+ provision for income taxes, our deferred tax assets and liabilities and any valuation
52
+ allowance recorded against our net deferred tax assets that are not more likely
53
+ than not to be realized.
54
+ sentences:
55
+ - How does the company treat income taxes in its financial reports?
56
+ - How does YouTube contribute to users' experience according to the company's statement?
57
+ - When did The Charles Schwab Corporation change its corporate headquarters from
58
+ San Francisco to Westlake, Texas?
59
+ pipeline_tag: sentence-similarity
60
+ library_name: sentence-transformers
61
+ metrics:
62
+ - cosine_accuracy@1
63
+ - cosine_accuracy@3
64
+ - cosine_accuracy@5
65
+ - cosine_accuracy@10
66
+ - cosine_precision@1
67
+ - cosine_precision@3
68
+ - cosine_precision@5
69
+ - cosine_precision@10
70
+ - cosine_recall@1
71
+ - cosine_recall@3
72
+ - cosine_recall@5
73
+ - cosine_recall@10
74
+ - cosine_ndcg@10
75
+ - cosine_mrr@10
76
+ - cosine_map@100
77
+ model-index:
78
+ - name: BGE base Financial Matryoshka
79
+ results:
80
+ - task:
81
+ type: information-retrieval
82
+ name: Information Retrieval
83
+ dataset:
84
+ name: dim 768
85
+ type: dim_768
86
+ metrics:
87
+ - type: cosine_accuracy@1
88
+ value: 0.7028571428571428
89
+ name: Cosine Accuracy@1
90
+ - type: cosine_accuracy@3
91
+ value: 0.8185714285714286
92
+ name: Cosine Accuracy@3
93
+ - type: cosine_accuracy@5
94
+ value: 0.85
95
+ name: Cosine Accuracy@5
96
+ - type: cosine_accuracy@10
97
+ value: 0.8914285714285715
98
+ name: Cosine Accuracy@10
99
+ - type: cosine_precision@1
100
+ value: 0.7028571428571428
101
+ name: Cosine Precision@1
102
+ - type: cosine_precision@3
103
+ value: 0.2728571428571428
104
+ name: Cosine Precision@3
105
+ - type: cosine_precision@5
106
+ value: 0.16999999999999998
107
+ name: Cosine Precision@5
108
+ - type: cosine_precision@10
109
+ value: 0.08914285714285713
110
+ name: Cosine Precision@10
111
+ - type: cosine_recall@1
112
+ value: 0.7028571428571428
113
+ name: Cosine Recall@1
114
+ - type: cosine_recall@3
115
+ value: 0.8185714285714286
116
+ name: Cosine Recall@3
117
+ - type: cosine_recall@5
118
+ value: 0.85
119
+ name: Cosine Recall@5
120
+ - type: cosine_recall@10
121
+ value: 0.8914285714285715
122
+ name: Cosine Recall@10
123
+ - type: cosine_ndcg@10
124
+ value: 0.798341878406338
125
+ name: Cosine Ndcg@10
126
+ - type: cosine_mrr@10
127
+ value: 0.7685107709750566
128
+ name: Cosine Mrr@10
129
+ - type: cosine_map@100
130
+ value: 0.7724628591268551
131
+ name: Cosine Map@100
132
+ - task:
133
+ type: information-retrieval
134
+ name: Information Retrieval
135
+ dataset:
136
+ name: dim 512
137
+ type: dim_512
138
+ metrics:
139
+ - type: cosine_accuracy@1
140
+ value: 0.6985714285714286
141
+ name: Cosine Accuracy@1
142
+ - type: cosine_accuracy@3
143
+ value: 0.8157142857142857
144
+ name: Cosine Accuracy@3
145
+ - type: cosine_accuracy@5
146
+ value: 0.8528571428571429
147
+ name: Cosine Accuracy@5
148
+ - type: cosine_accuracy@10
149
+ value: 0.8985714285714286
150
+ name: Cosine Accuracy@10
151
+ - type: cosine_precision@1
152
+ value: 0.6985714285714286
153
+ name: Cosine Precision@1
154
+ - type: cosine_precision@3
155
+ value: 0.27190476190476187
156
+ name: Cosine Precision@3
157
+ - type: cosine_precision@5
158
+ value: 0.17057142857142857
159
+ name: Cosine Precision@5
160
+ - type: cosine_precision@10
161
+ value: 0.08985714285714284
162
+ name: Cosine Precision@10
163
+ - type: cosine_recall@1
164
+ value: 0.6985714285714286
165
+ name: Cosine Recall@1
166
+ - type: cosine_recall@3
167
+ value: 0.8157142857142857
168
+ name: Cosine Recall@3
169
+ - type: cosine_recall@5
170
+ value: 0.8528571428571429
171
+ name: Cosine Recall@5
172
+ - type: cosine_recall@10
173
+ value: 0.8985714285714286
174
+ name: Cosine Recall@10
175
+ - type: cosine_ndcg@10
176
+ value: 0.7981564446782999
177
+ name: Cosine Ndcg@10
178
+ - type: cosine_mrr@10
179
+ value: 0.7661643990929705
180
+ name: Cosine Mrr@10
181
+ - type: cosine_map@100
182
+ value: 0.7695965865934244
183
+ name: Cosine Map@100
184
+ - task:
185
+ type: information-retrieval
186
+ name: Information Retrieval
187
+ dataset:
188
+ name: dim 256
189
+ type: dim_256
190
+ metrics:
191
+ - type: cosine_accuracy@1
192
+ value: 0.6971428571428572
193
+ name: Cosine Accuracy@1
194
+ - type: cosine_accuracy@3
195
+ value: 0.8085714285714286
196
+ name: Cosine Accuracy@3
197
+ - type: cosine_accuracy@5
198
+ value: 0.8428571428571429
199
+ name: Cosine Accuracy@5
200
+ - type: cosine_accuracy@10
201
+ value: 0.8885714285714286
202
+ name: Cosine Accuracy@10
203
+ - type: cosine_precision@1
204
+ value: 0.6971428571428572
205
+ name: Cosine Precision@1
206
+ - type: cosine_precision@3
207
+ value: 0.2695238095238095
208
+ name: Cosine Precision@3
209
+ - type: cosine_precision@5
210
+ value: 0.16857142857142857
211
+ name: Cosine Precision@5
212
+ - type: cosine_precision@10
213
+ value: 0.08885714285714284
214
+ name: Cosine Precision@10
215
+ - type: cosine_recall@1
216
+ value: 0.6971428571428572
217
+ name: Cosine Recall@1
218
+ - type: cosine_recall@3
219
+ value: 0.8085714285714286
220
+ name: Cosine Recall@3
221
+ - type: cosine_recall@5
222
+ value: 0.8428571428571429
223
+ name: Cosine Recall@5
224
+ - type: cosine_recall@10
225
+ value: 0.8885714285714286
226
+ name: Cosine Recall@10
227
+ - type: cosine_ndcg@10
228
+ value: 0.7917977544361884
229
+ name: Cosine Ndcg@10
230
+ - type: cosine_mrr@10
231
+ value: 0.7611133786848071
232
+ name: Cosine Mrr@10
233
+ - type: cosine_map@100
234
+ value: 0.765197446517495
235
+ name: Cosine Map@100
236
+ - task:
237
+ type: information-retrieval
238
+ name: Information Retrieval
239
+ dataset:
240
+ name: dim 128
241
+ type: dim_128
242
+ metrics:
243
+ - type: cosine_accuracy@1
244
+ value: 0.6871428571428572
245
+ name: Cosine Accuracy@1
246
+ - type: cosine_accuracy@3
247
+ value: 0.8028571428571428
248
+ name: Cosine Accuracy@3
249
+ - type: cosine_accuracy@5
250
+ value: 0.8342857142857143
251
+ name: Cosine Accuracy@5
252
+ - type: cosine_accuracy@10
253
+ value: 0.8857142857142857
254
+ name: Cosine Accuracy@10
255
+ - type: cosine_precision@1
256
+ value: 0.6871428571428572
257
+ name: Cosine Precision@1
258
+ - type: cosine_precision@3
259
+ value: 0.2676190476190476
260
+ name: Cosine Precision@3
261
+ - type: cosine_precision@5
262
+ value: 0.16685714285714284
263
+ name: Cosine Precision@5
264
+ - type: cosine_precision@10
265
+ value: 0.08857142857142856
266
+ name: Cosine Precision@10
267
+ - type: cosine_recall@1
268
+ value: 0.6871428571428572
269
+ name: Cosine Recall@1
270
+ - type: cosine_recall@3
271
+ value: 0.8028571428571428
272
+ name: Cosine Recall@3
273
+ - type: cosine_recall@5
274
+ value: 0.8342857142857143
275
+ name: Cosine Recall@5
276
+ - type: cosine_recall@10
277
+ value: 0.8857142857142857
278
+ name: Cosine Recall@10
279
+ - type: cosine_ndcg@10
280
+ value: 0.7844783501102325
281
+ name: Cosine Ndcg@10
282
+ - type: cosine_mrr@10
283
+ value: 0.7524892290249433
284
+ name: Cosine Mrr@10
285
+ - type: cosine_map@100
286
+ value: 0.756590766205664
287
+ name: Cosine Map@100
288
+ - task:
289
+ type: information-retrieval
290
+ name: Information Retrieval
291
+ dataset:
292
+ name: dim 64
293
+ type: dim_64
294
+ metrics:
295
+ - type: cosine_accuracy@1
296
+ value: 0.6571428571428571
297
+ name: Cosine Accuracy@1
298
+ - type: cosine_accuracy@3
299
+ value: 0.7814285714285715
300
+ name: Cosine Accuracy@3
301
+ - type: cosine_accuracy@5
302
+ value: 0.8114285714285714
303
+ name: Cosine Accuracy@5
304
+ - type: cosine_accuracy@10
305
+ value: 0.8585714285714285
306
+ name: Cosine Accuracy@10
307
+ - type: cosine_precision@1
308
+ value: 0.6571428571428571
309
+ name: Cosine Precision@1
310
+ - type: cosine_precision@3
311
+ value: 0.2604761904761905
312
+ name: Cosine Precision@3
313
+ - type: cosine_precision@5
314
+ value: 0.16228571428571428
315
+ name: Cosine Precision@5
316
+ - type: cosine_precision@10
317
+ value: 0.08585714285714285
318
+ name: Cosine Precision@10
319
+ - type: cosine_recall@1
320
+ value: 0.6571428571428571
321
+ name: Cosine Recall@1
322
+ - type: cosine_recall@3
323
+ value: 0.7814285714285715
324
+ name: Cosine Recall@3
325
+ - type: cosine_recall@5
326
+ value: 0.8114285714285714
327
+ name: Cosine Recall@5
328
+ - type: cosine_recall@10
329
+ value: 0.8585714285714285
330
+ name: Cosine Recall@10
331
+ - type: cosine_ndcg@10
332
+ value: 0.7570464835011314
333
+ name: Cosine Ndcg@10
334
+ - type: cosine_mrr@10
335
+ value: 0.7245481859410431
336
+ name: Cosine Mrr@10
337
+ - type: cosine_map@100
338
+ value: 0.729409564724743
339
+ name: Cosine Map@100
340
+ ---
341
+
342
+ # BGE base Financial Matryoshka
343
+
344
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
345
+
346
+ ## Model Details
347
+
348
+ ### Model Description
349
+ - **Model Type:** Sentence Transformer
350
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
351
+ - **Maximum Sequence Length:** 512 tokens
352
+ - **Output Dimensionality:** 768 dimensions
353
+ - **Similarity Function:** Cosine Similarity
354
+ - **Training Dataset:**
355
+ - json
356
+ - **Language:** en
357
+ - **License:** apache-2.0
358
+
359
+ ### Model Sources
360
+
361
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
362
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
363
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
364
+
365
+ ### Full Model Architecture
366
+
367
+ ```
368
+ SentenceTransformer(
369
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
370
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
371
+ (2): Normalize()
372
+ )
373
+ ```
374
+
375
+ ## Usage
376
+
377
+ ### Direct Usage (Sentence Transformers)
378
+
379
+ First install the Sentence Transformers library:
380
+
381
+ ```bash
382
+ pip install -U sentence-transformers
383
+ ```
384
+
385
+ Then you can load this model and run inference.
386
+ ```python
387
+ from sentence_transformers import SentenceTransformer
388
+
389
+ # Download from the 🤗 Hub
390
+ model = SentenceTransformer("ethanteh/bge-base-financial-matryoshka")
391
+ # Run inference
392
+ sentences = [
393
+ 'Income Taxes We are subject to income taxes in the U.S. and in many foreign jurisdictions. Significant judgment is required in determining our provision for income taxes, our deferred tax assets and liabilities and any valuation allowance recorded against our net deferred tax assets that are not more likely than not to be realized.',
394
+ 'How does the company treat income taxes in its financial reports?',
395
+ "How does YouTube contribute to users' experience according to the company's statement?",
396
+ ]
397
+ embeddings = model.encode(sentences)
398
+ print(embeddings.shape)
399
+ # [3, 768]
400
+
401
+ # Get the similarity scores for the embeddings
402
+ similarities = model.similarity(embeddings, embeddings)
403
+ print(similarities.shape)
404
+ # [3, 3]
405
+ ```
406
+
407
+ <!--
408
+ ### Direct Usage (Transformers)
409
+
410
+ <details><summary>Click to see the direct usage in Transformers</summary>
411
+
412
+ </details>
413
+ -->
414
+
415
+ <!--
416
+ ### Downstream Usage (Sentence Transformers)
417
+
418
+ You can finetune this model on your own dataset.
419
+
420
+ <details><summary>Click to expand</summary>
421
+
422
+ </details>
423
+ -->
424
+
425
+ <!--
426
+ ### Out-of-Scope Use
427
+
428
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
429
+ -->
430
+
431
+ ## Evaluation
432
+
433
+ ### Metrics
434
+
435
+ #### Information Retrieval
436
+
437
+ * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
438
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
439
+
440
+ | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
441
+ |:--------------------|:-----------|:-----------|:-----------|:-----------|:----------|
442
+ | cosine_accuracy@1 | 0.7029 | 0.6986 | 0.6971 | 0.6871 | 0.6571 |
443
+ | cosine_accuracy@3 | 0.8186 | 0.8157 | 0.8086 | 0.8029 | 0.7814 |
444
+ | cosine_accuracy@5 | 0.85 | 0.8529 | 0.8429 | 0.8343 | 0.8114 |
445
+ | cosine_accuracy@10 | 0.8914 | 0.8986 | 0.8886 | 0.8857 | 0.8586 |
446
+ | cosine_precision@1 | 0.7029 | 0.6986 | 0.6971 | 0.6871 | 0.6571 |
447
+ | cosine_precision@3 | 0.2729 | 0.2719 | 0.2695 | 0.2676 | 0.2605 |
448
+ | cosine_precision@5 | 0.17 | 0.1706 | 0.1686 | 0.1669 | 0.1623 |
449
+ | cosine_precision@10 | 0.0891 | 0.0899 | 0.0889 | 0.0886 | 0.0859 |
450
+ | cosine_recall@1 | 0.7029 | 0.6986 | 0.6971 | 0.6871 | 0.6571 |
451
+ | cosine_recall@3 | 0.8186 | 0.8157 | 0.8086 | 0.8029 | 0.7814 |
452
+ | cosine_recall@5 | 0.85 | 0.8529 | 0.8429 | 0.8343 | 0.8114 |
453
+ | cosine_recall@10 | 0.8914 | 0.8986 | 0.8886 | 0.8857 | 0.8586 |
454
+ | **cosine_ndcg@10** | **0.7983** | **0.7982** | **0.7918** | **0.7845** | **0.757** |
455
+ | cosine_mrr@10 | 0.7685 | 0.7662 | 0.7611 | 0.7525 | 0.7245 |
456
+ | cosine_map@100 | 0.7725 | 0.7696 | 0.7652 | 0.7566 | 0.7294 |
457
+
458
+ <!--
459
+ ## Bias, Risks and Limitations
460
+
461
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
462
+ -->
463
+
464
+ <!--
465
+ ### Recommendations
466
+
467
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
468
+ -->
469
+
470
+ ## Training Details
471
+
472
+ ### Training Dataset
473
+
474
+ #### json
475
+
476
+ * Dataset: json
477
+ * Size: 6,300 training samples
478
+ * Columns: <code>positive</code> and <code>anchor</code>
479
+ * Approximate statistics based on the first 1000 samples:
480
+ | | positive | anchor |
481
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
482
+ | type | string | string |
483
+ | details | <ul><li>min: 8 tokens</li><li>mean: 46.74 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.52 tokens</li><li>max: 39 tokens</li></ul> |
484
+ * Samples:
485
+ | positive | anchor |
486
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
487
+ | <code>During 2021, as a result of the enactment of a tax law and the closing of various acquisitions, the company concluded that it is no longer its intention to reinvest its undistributed earnings of its foreign TRSs indefinitely outside the United States.</code> | <code>What is the impact of a tax law change and acquisition closings on the company's intention regarding the reinvestment of undistributed earnings of its foreign TRSs?</code> |
488
+ | <code>In the year ended December 31, 2023, EBIT-adjusted decreased primarily due to: (1) increased Cost primarily due to increased campaigns and other warranty-related costs of $2.0 billion, increased EV-related charges of $1.9 billion primarily due to $1.6 billion in inventory adjustments to reflect the net realizable value at period end.</code> | <code>What factors contributed to the decrease in GM North America's EBIT-adjusted in 2023?</code> |
489
+ | <code>Peloton's e-commerce platform offers a range of products and services, including Peloton Bikes, Bike+, Tread, and Row products, along with one-on-one sales consultations.</code> | <code>What types of products and services does Peloton offer through its e-commerce platform?</code> |
490
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
491
+ ```json
492
+ {
493
+ "loss": "MultipleNegativesRankingLoss",
494
+ "matryoshka_dims": [
495
+ 768,
496
+ 512,
497
+ 256,
498
+ 128,
499
+ 64
500
+ ],
501
+ "matryoshka_weights": [
502
+ 1,
503
+ 1,
504
+ 1,
505
+ 1,
506
+ 1
507
+ ],
508
+ "n_dims_per_step": -1
509
+ }
510
+ ```
511
+
512
+ ### Training Hyperparameters
513
+ #### Non-Default Hyperparameters
514
+
515
+ - `eval_strategy`: epoch
516
+ - `gradient_accumulation_steps`: 16
517
+ - `learning_rate`: 2e-05
518
+ - `num_train_epochs`: 4
519
+ - `lr_scheduler_type`: cosine
520
+ - `warmup_ratio`: 0.1
521
+ - `fp16`: True
522
+ - `tf32`: False
523
+ - `load_best_model_at_end`: True
524
+ - `optim`: adamw_torch_fused
525
+ - `batch_sampler`: no_duplicates
526
+
527
+ #### All Hyperparameters
528
+ <details><summary>Click to expand</summary>
529
+
530
+ - `overwrite_output_dir`: False
531
+ - `do_predict`: False
532
+ - `eval_strategy`: epoch
533
+ - `prediction_loss_only`: True
534
+ - `per_device_train_batch_size`: 8
535
+ - `per_device_eval_batch_size`: 8
536
+ - `per_gpu_train_batch_size`: None
537
+ - `per_gpu_eval_batch_size`: None
538
+ - `gradient_accumulation_steps`: 16
539
+ - `eval_accumulation_steps`: None
540
+ - `torch_empty_cache_steps`: None
541
+ - `learning_rate`: 2e-05
542
+ - `weight_decay`: 0.0
543
+ - `adam_beta1`: 0.9
544
+ - `adam_beta2`: 0.999
545
+ - `adam_epsilon`: 1e-08
546
+ - `max_grad_norm`: 1.0
547
+ - `num_train_epochs`: 4
548
+ - `max_steps`: -1
549
+ - `lr_scheduler_type`: cosine
550
+ - `lr_scheduler_kwargs`: {}
551
+ - `warmup_ratio`: 0.1
552
+ - `warmup_steps`: 0
553
+ - `log_level`: passive
554
+ - `log_level_replica`: warning
555
+ - `log_on_each_node`: True
556
+ - `logging_nan_inf_filter`: True
557
+ - `save_safetensors`: True
558
+ - `save_on_each_node`: False
559
+ - `save_only_model`: False
560
+ - `restore_callback_states_from_checkpoint`: False
561
+ - `no_cuda`: False
562
+ - `use_cpu`: False
563
+ - `use_mps_device`: False
564
+ - `seed`: 42
565
+ - `data_seed`: None
566
+ - `jit_mode_eval`: False
567
+ - `use_ipex`: False
568
+ - `bf16`: False
569
+ - `fp16`: True
570
+ - `fp16_opt_level`: O1
571
+ - `half_precision_backend`: auto
572
+ - `bf16_full_eval`: False
573
+ - `fp16_full_eval`: False
574
+ - `tf32`: False
575
+ - `local_rank`: 0
576
+ - `ddp_backend`: None
577
+ - `tpu_num_cores`: None
578
+ - `tpu_metrics_debug`: False
579
+ - `debug`: []
580
+ - `dataloader_drop_last`: False
581
+ - `dataloader_num_workers`: 0
582
+ - `dataloader_prefetch_factor`: None
583
+ - `past_index`: -1
584
+ - `disable_tqdm`: False
585
+ - `remove_unused_columns`: True
586
+ - `label_names`: None
587
+ - `load_best_model_at_end`: True
588
+ - `ignore_data_skip`: False
589
+ - `fsdp`: []
590
+ - `fsdp_min_num_params`: 0
591
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
592
+ - `fsdp_transformer_layer_cls_to_wrap`: None
593
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
594
+ - `deepspeed`: None
595
+ - `label_smoothing_factor`: 0.0
596
+ - `optim`: adamw_torch_fused
597
+ - `optim_args`: None
598
+ - `adafactor`: False
599
+ - `group_by_length`: False
600
+ - `length_column_name`: length
601
+ - `ddp_find_unused_parameters`: None
602
+ - `ddp_bucket_cap_mb`: None
603
+ - `ddp_broadcast_buffers`: False
604
+ - `dataloader_pin_memory`: True
605
+ - `dataloader_persistent_workers`: False
606
+ - `skip_memory_metrics`: True
607
+ - `use_legacy_prediction_loop`: False
608
+ - `push_to_hub`: False
609
+ - `resume_from_checkpoint`: None
610
+ - `hub_model_id`: None
611
+ - `hub_strategy`: every_save
612
+ - `hub_private_repo`: None
613
+ - `hub_always_push`: False
614
+ - `gradient_checkpointing`: False
615
+ - `gradient_checkpointing_kwargs`: None
616
+ - `include_inputs_for_metrics`: False
617
+ - `include_for_metrics`: []
618
+ - `eval_do_concat_batches`: True
619
+ - `fp16_backend`: auto
620
+ - `push_to_hub_model_id`: None
621
+ - `push_to_hub_organization`: None
622
+ - `mp_parameters`:
623
+ - `auto_find_batch_size`: False
624
+ - `full_determinism`: False
625
+ - `torchdynamo`: None
626
+ - `ray_scope`: last
627
+ - `ddp_timeout`: 1800
628
+ - `torch_compile`: False
629
+ - `torch_compile_backend`: None
630
+ - `torch_compile_mode`: None
631
+ - `dispatch_batches`: None
632
+ - `split_batches`: None
633
+ - `include_tokens_per_second`: False
634
+ - `include_num_input_tokens_seen`: False
635
+ - `neftune_noise_alpha`: None
636
+ - `optim_target_modules`: None
637
+ - `batch_eval_metrics`: False
638
+ - `eval_on_start`: False
639
+ - `use_liger_kernel`: False
640
+ - `eval_use_gather_object`: False
641
+ - `average_tokens_across_devices`: False
642
+ - `prompts`: None
643
+ - `batch_sampler`: no_duplicates
644
+ - `multi_dataset_batch_sampler`: proportional
645
+
646
+ </details>
647
+
648
+ ### Training Logs
649
+ | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
650
+ |:---------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
651
+ | 0.2030 | 10 | 9.6119 | - | - | - | - | - |
652
+ | 0.4061 | 20 | 6.108 | - | - | - | - | - |
653
+ | 0.6091 | 30 | 3.9303 | - | - | - | - | - |
654
+ | 0.8122 | 40 | 3.4657 | - | - | - | - | - |
655
+ | 1.0 | 50 | 3.6929 | 0.7928 | 0.7891 | 0.7849 | 0.7732 | 0.7465 |
656
+ | 1.2030 | 60 | 1.86 | - | - | - | - | - |
657
+ | 1.4061 | 70 | 1.3879 | - | - | - | - | - |
658
+ | 1.6091 | 80 | 1.4367 | - | - | - | - | - |
659
+ | 1.8122 | 90 | 1.1032 | - | - | - | - | - |
660
+ | 2.0 | 100 | 1.696 | 0.7996 | 0.7966 | 0.7899 | 0.7815 | 0.7563 |
661
+ | 2.2030 | 110 | 1.0769 | - | - | - | - | - |
662
+ | 2.4061 | 120 | 0.6618 | - | - | - | - | - |
663
+ | 2.6091 | 130 | 0.912 | - | - | - | - | - |
664
+ | 2.8122 | 140 | 0.6271 | - | - | - | - | - |
665
+ | 3.0 | 150 | 0.9949 | 0.7984 | 0.7973 | 0.7925 | 0.7835 | 0.7574 |
666
+ | 3.2030 | 160 | 0.5734 | - | - | - | - | - |
667
+ | 3.4061 | 170 | 0.4934 | - | - | - | - | - |
668
+ | 3.6091 | 180 | 0.6593 | - | - | - | - | - |
669
+ | 3.8122 | 190 | 0.5452 | - | - | - | - | - |
670
+ | **3.934** | **196** | **-** | **0.7983** | **0.7982** | **0.7918** | **0.7845** | **0.757** |
671
+
672
+ * The bold row denotes the saved checkpoint.
673
+
674
+ ### Framework Versions
675
+ - Python: 3.11.11
676
+ - Sentence Transformers: 3.3.1
677
+ - Transformers: 4.48.1
678
+ - PyTorch: 2.5.1+cu121
679
+ - Accelerate: 1.2.1
680
+ - Datasets: 2.19.1
681
+ - Tokenizers: 0.21.0
682
+
683
+ ## Citation
684
+
685
+ ### BibTeX
686
+
687
+ #### Sentence Transformers
688
+ ```bibtex
689
+ @inproceedings{reimers-2019-sentence-bert,
690
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
691
+ author = "Reimers, Nils and Gurevych, Iryna",
692
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
693
+ month = "11",
694
+ year = "2019",
695
+ publisher = "Association for Computational Linguistics",
696
+ url = "https://arxiv.org/abs/1908.10084",
697
+ }
698
+ ```
699
+
700
+ #### MatryoshkaLoss
701
+ ```bibtex
702
+ @misc{kusupati2024matryoshka,
703
+ title={Matryoshka Representation Learning},
704
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
705
+ year={2024},
706
+ eprint={2205.13147},
707
+ archivePrefix={arXiv},
708
+ primaryClass={cs.LG}
709
+ }
710
+ ```
711
+
712
+ #### MultipleNegativesRankingLoss
713
+ ```bibtex
714
+ @misc{henderson2017efficient,
715
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
716
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
717
+ year={2017},
718
+ eprint={1705.00652},
719
+ archivePrefix={arXiv},
720
+ primaryClass={cs.CL}
721
+ }
722
+ ```
723
+
724
+ <!--
725
+ ## Glossary
726
+
727
+ *Clearly define terms in order to be accessible across audiences.*
728
+ -->
729
+
730
+ <!--
731
+ ## Model Card Authors
732
+
733
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
734
+ -->
735
+
736
+ <!--
737
+ ## Model Card Contact
738
+
739
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
740
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.48.1",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3cd99213455f4a2f449f735c20410c29cef2355e4cba5058d5ffd2dd55c1624
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff