BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ethanteh/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Income Taxes We are subject to income taxes in the U.S. and in many foreign jurisdictions. Significant judgment is required in determining our provision for income taxes, our deferred tax assets and liabilities and any valuation allowance recorded against our net deferred tax assets that are not more likely than not to be realized.',
'How does the company treat income taxes in its financial reports?',
"How does YouTube contribute to users' experience according to the company's statement?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.7029 | 0.6986 | 0.6971 | 0.6871 | 0.6571 |
cosine_accuracy@3 | 0.8186 | 0.8157 | 0.8086 | 0.8029 | 0.7814 |
cosine_accuracy@5 | 0.85 | 0.8529 | 0.8429 | 0.8343 | 0.8114 |
cosine_accuracy@10 | 0.8914 | 0.8986 | 0.8886 | 0.8857 | 0.8586 |
cosine_precision@1 | 0.7029 | 0.6986 | 0.6971 | 0.6871 | 0.6571 |
cosine_precision@3 | 0.2729 | 0.2719 | 0.2695 | 0.2676 | 0.2605 |
cosine_precision@5 | 0.17 | 0.1706 | 0.1686 | 0.1669 | 0.1623 |
cosine_precision@10 | 0.0891 | 0.0899 | 0.0889 | 0.0886 | 0.0859 |
cosine_recall@1 | 0.7029 | 0.6986 | 0.6971 | 0.6871 | 0.6571 |
cosine_recall@3 | 0.8186 | 0.8157 | 0.8086 | 0.8029 | 0.7814 |
cosine_recall@5 | 0.85 | 0.8529 | 0.8429 | 0.8343 | 0.8114 |
cosine_recall@10 | 0.8914 | 0.8986 | 0.8886 | 0.8857 | 0.8586 |
cosine_ndcg@10 | 0.7983 | 0.7982 | 0.7918 | 0.7845 | 0.757 |
cosine_mrr@10 | 0.7685 | 0.7662 | 0.7611 | 0.7525 | 0.7245 |
cosine_map@100 | 0.7725 | 0.7696 | 0.7652 | 0.7566 | 0.7294 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 8 tokens
- mean: 46.74 tokens
- max: 512 tokens
- min: 8 tokens
- mean: 20.52 tokens
- max: 39 tokens
- Samples:
positive anchor During 2021, as a result of the enactment of a tax law and the closing of various acquisitions, the company concluded that it is no longer its intention to reinvest its undistributed earnings of its foreign TRSs indefinitely outside the United States.
What is the impact of a tax law change and acquisition closings on the company's intention regarding the reinvestment of undistributed earnings of its foreign TRSs?
In the year ended December 31, 2023, EBIT-adjusted decreased primarily due to: (1) increased Cost primarily due to increased campaigns and other warranty-related costs of $2.0 billion, increased EV-related charges of $1.9 billion primarily due to $1.6 billion in inventory adjustments to reflect the net realizable value at period end.
What factors contributed to the decrease in GM North America's EBIT-adjusted in 2023?
Peloton's e-commerce platform offers a range of products and services, including Peloton Bikes, Bike+, Tread, and Row products, along with one-on-one sales consultations.
What types of products and services does Peloton offer through its e-commerce platform?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochgradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.2030 | 10 | 9.6119 | - | - | - | - | - |
0.4061 | 20 | 6.108 | - | - | - | - | - |
0.6091 | 30 | 3.9303 | - | - | - | - | - |
0.8122 | 40 | 3.4657 | - | - | - | - | - |
1.0 | 50 | 3.6929 | 0.7928 | 0.7891 | 0.7849 | 0.7732 | 0.7465 |
1.2030 | 60 | 1.86 | - | - | - | - | - |
1.4061 | 70 | 1.3879 | - | - | - | - | - |
1.6091 | 80 | 1.4367 | - | - | - | - | - |
1.8122 | 90 | 1.1032 | - | - | - | - | - |
2.0 | 100 | 1.696 | 0.7996 | 0.7966 | 0.7899 | 0.7815 | 0.7563 |
2.2030 | 110 | 1.0769 | - | - | - | - | - |
2.4061 | 120 | 0.6618 | - | - | - | - | - |
2.6091 | 130 | 0.912 | - | - | - | - | - |
2.8122 | 140 | 0.6271 | - | - | - | - | - |
3.0 | 150 | 0.9949 | 0.7984 | 0.7973 | 0.7925 | 0.7835 | 0.7574 |
3.2030 | 160 | 0.5734 | - | - | - | - | - |
3.4061 | 170 | 0.4934 | - | - | - | - | - |
3.6091 | 180 | 0.6593 | - | - | - | - | - |
3.8122 | 190 | 0.5452 | - | - | - | - | - |
3.934 | 196 | - | 0.7983 | 0.7982 | 0.7918 | 0.7845 | 0.757 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 2.19.1
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for ethanteh/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.703
- Cosine Accuracy@3 on dim 768self-reported0.819
- Cosine Accuracy@5 on dim 768self-reported0.850
- Cosine Accuracy@10 on dim 768self-reported0.891
- Cosine Precision@1 on dim 768self-reported0.703
- Cosine Precision@3 on dim 768self-reported0.273
- Cosine Precision@5 on dim 768self-reported0.170
- Cosine Precision@10 on dim 768self-reported0.089
- Cosine Recall@1 on dim 768self-reported0.703
- Cosine Recall@3 on dim 768self-reported0.819