See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: EleutherAI/pythia-14m
bf16: auto
chat_template: llama3
dataloader_num_workers: 6
dataset_prepared_path: null
datasets:
- data_files:
- 802c9640ea62abdd_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/802c9640ea62abdd_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping:
metric: eval_loss
mode: min
patience: 3
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: true
hub_model_id: error577/69b7eea5-e651-4261-bbe7-dff9a84f0402
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0005
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps:
micro_batch_size: 8
mlflow_experiment_name: /tmp/802c9640ea62abdd_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: 8ea0398e-a0bd-403d-bf23-7a1713ec2e02
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 8ea0398e-a0bd-403d-bf23-7a1713ec2e02
warmup_steps: 100
weight_decay: 0.01
xformers_attention: null
69b7eea5-e651-4261-bbe7-dff9a84f0402
This model is a fine-tuned version of EleutherAI/pythia-14m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.8237
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
39.1249 | 0.0026 | 1 | 10.0968 |
71.4111 | 0.5282 | 200 | 9.3248 |
44.3177 | 1.0565 | 400 | 8.1473 |
49.1185 | 1.5847 | 600 | 6.9981 |
50.9228 | 2.1129 | 800 | 6.6570 |
40.8153 | 2.6411 | 1000 | 6.8431 |
42.4526 | 3.1694 | 1200 | 7.7932 |
39.7586 | 3.6976 | 1400 | 6.2292 |
48.8855 | 4.2258 | 1600 | 5.4457 |
44.0622 | 4.7540 | 1800 | 4.9771 |
45.8481 | 5.2823 | 2000 | 6.3697 |
47.8421 | 5.8105 | 2200 | 5.8377 |
43.9395 | 6.3387 | 2400 | 5.1223 |
85.549 | 6.8670 | 2600 | 6.1504 |
47.3447 | 7.3952 | 2800 | 5.7667 |
43.8816 | 7.9234 | 3000 | 5.3430 |
40.3727 | 8.4516 | 3200 | 6.1097 |
41.1325 | 8.9799 | 3400 | 5.1159 |
40.9136 | 9.5081 | 3600 | 4.5801 |
41.1352 | 10.0363 | 3800 | 6.2688 |
39.6023 | 10.5645 | 4000 | 5.1909 |
80.3153 | 11.0928 | 4200 | 6.4605 |
45.0038 | 11.6210 | 4400 | 4.5793 |
41.6005 | 12.1492 | 4600 | 4.9905 |
45.3766 | 12.6775 | 4800 | 5.0839 |
47.2055 | 13.2057 | 5000 | 4.8364 |
39.6311 | 13.7339 | 5200 | 4.4988 |
38.6004 | 14.2621 | 5400 | 4.3441 |
40.9808 | 14.7904 | 5600 | 4.4398 |
37.3181 | 15.3186 | 5800 | 5.1047 |
36.6136 | 15.8468 | 6000 | 5.4884 |
37.8118 | 16.3750 | 6200 | 4.3552 |
36.0667 | 16.9033 | 6400 | 4.3316 |
37.5132 | 17.4315 | 6600 | 4.8862 |
50.9856 | 17.9597 | 6800 | 5.5664 |
36.4944 | 18.4879 | 7000 | 4.2171 |
45.6295 | 19.0162 | 7200 | 4.1826 |
42.4406 | 19.5444 | 7400 | 4.0599 |
26.7199 | 20.0726 | 7600 | 4.1067 |
54.9829 | 20.6009 | 7800 | 4.8624 |
39.5695 | 21.1291 | 8000 | 4.0729 |
37.4214 | 21.6573 | 8200 | 3.9378 |
36.9187 | 22.1855 | 8400 | 4.3148 |
35.4205 | 22.7138 | 8600 | 4.1648 |
35.7372 | 23.2420 | 8800 | 4.0165 |
35.1088 | 23.7702 | 9000 | 3.8706 |
39.2135 | 24.2984 | 9200 | 4.0032 |
37.4056 | 24.8267 | 9400 | 3.9010 |
34.5682 | 25.3549 | 9600 | 3.8448 |
36.7296 | 25.8831 | 9800 | 4.0820 |
42.8511 | 26.4114 | 10000 | 3.9215 |
40.7808 | 26.9396 | 10200 | 3.8902 |
15.1421 | 27.4678 | 10400 | 3.7762 |
34.2062 | 27.9960 | 10600 | 3.8415 |
36.2686 | 28.5243 | 10800 | 3.8351 |
36.9976 | 29.0525 | 11000 | 3.7793 |
35.2614 | 29.5807 | 11200 | 3.8270 |
34.4366 | 30.1089 | 11400 | 3.7929 |
34.2567 | 30.6372 | 11600 | 3.8164 |
40.2896 | 31.1654 | 11800 | 3.7706 |
37.7728 | 31.6936 | 12000 | 3.7791 |
35.5756 | 32.2219 | 12200 | 3.7962 |
34.3571 | 32.7501 | 12400 | 3.8736 |
42.4826 | 33.2783 | 12600 | 3.7960 |
40.7814 | 33.8065 | 12800 | 3.8017 |
14.1216 | 34.3348 | 13000 | 3.7857 |
11.2619 | 34.8630 | 13200 | 3.7641 |
37.2205 | 35.3912 | 13400 | 3.8345 |
35.3169 | 35.9194 | 13600 | 3.8081 |
34.3745 | 36.4477 | 13800 | 3.7031 |
34.5547 | 36.9759 | 14000 | 3.7369 |
34.5162 | 37.5041 | 14200 | 3.6995 |
37.7118 | 38.0324 | 14400 | 3.7207 |
39.0695 | 38.5606 | 14600 | 3.7335 |
34.4469 | 39.0888 | 14800 | 3.7482 |
34.4357 | 39.6170 | 15000 | 3.7970 |
43.1633 | 40.1453 | 15200 | 3.7945 |
42.9024 | 40.6735 | 15400 | 3.7269 |
14.7952 | 41.2017 | 15600 | 3.8083 |
10.8769 | 41.7299 | 15800 | 3.7764 |
35.1502 | 42.2582 | 16000 | 3.8323 |
35.9114 | 42.7864 | 16200 | 3.7109 |
34.8312 | 43.3146 | 16400 | 3.7495 |
34.5818 | 43.8429 | 16600 | 3.7187 |
33.9313 | 44.3711 | 16800 | 3.7662 |
34.665 | 44.8993 | 17000 | 3.8026 |
37.6367 | 45.4275 | 17200 | 3.6587 |
38.0785 | 45.9558 | 17400 | 3.6727 |
33.453 | 46.4840 | 17600 | 3.7711 |
40.0688 | 47.0122 | 17800 | 3.7068 |
40.0877 | 47.5404 | 18000 | 3.8389 |
10.4014 | 48.0687 | 18200 | 3.7921 |
10.9314 | 48.5969 | 18400 | 3.8024 |
33.8793 | 49.1251 | 18600 | 3.7171 |
34.2436 | 49.6534 | 18800 | 3.8237 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 19
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for error577/69b7eea5-e651-4261-bbe7-dff9a84f0402
Base model
EleutherAI/pythia-14m