Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: JackFram/llama-68m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 425c6bf4bb96a710_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/425c6bf4bb96a710_train_data.json
  type:
    field_input: paragraph
    field_instruction: question
    field_output: answer
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 5
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: false
group_by_length: false
hub_model_id: error577/678bdeae-3a40-4e29-b67c-7fbc0c52dd71
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 1000
micro_batch_size: 2
mlflow_experiment_name: /tmp/425c6bf4bb96a710_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 832d80d5-251c-46fe-b13b-7cc0427dac5a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 832d80d5-251c-46fe-b13b-7cc0427dac5a
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

678bdeae-3a40-4e29-b67c-7fbc0c52dd71

This model is a fine-tuned version of JackFram/llama-68m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0955

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 387

Training results

Training Loss Epoch Step Validation Loss
5.8379 0.0052 1 5.7354
0.9867 0.2020 39 1.4082
1.0126 0.4040 78 1.2563
0.8883 0.6060 117 1.1930
1.8973 0.8080 156 1.1759
2.993 1.0100 195 1.2300
0.5959 1.2120 234 1.1373
0.7068 1.4140 273 1.1433
0.9381 1.6161 312 1.0941
0.8364 1.8181 351 1.0955

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for error577/678bdeae-3a40-4e29-b67c-7fbc0c52dd71

Base model

JackFram/llama-68m
Adapter
(248)
this model