See axolotl config
axolotl version: 0.4.1
adapter: qlora
base_model: unsloth/SmolLM2-360M-Instruct
bf16: auto
chat_template: llama3
dataloader_num_workers: 6
dataset_prepared_path: null
datasets:
- data_files:
- 8591808dea314692_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/8591808dea314692_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: true
hub_model_id: error577/0ab8572a-074f-4dff-be51-b76c47b753a5
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 300
micro_batch_size: 1
mlflow_experiment_name: /tmp/8591808dea314692_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: af92a2e6-f974-41cd-8cc0-cada1f70f806
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: af92a2e6-f974-41cd-8cc0-cada1f70f806
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
0ab8572a-074f-4dff-be51-b76c47b753a5
This model is a fine-tuned version of unsloth/SmolLM2-360M-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5958
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 300
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6213 | 0.0084 | 1 | 2.5594 |
1.9134 | 0.4206 | 50 | 1.9725 |
1.7161 | 0.8412 | 100 | 1.7745 |
1.6513 | 1.2618 | 150 | 1.6839 |
1.4331 | 1.6824 | 200 | 1.6259 |
1.5944 | 2.1030 | 250 | 1.5992 |
1.4112 | 2.5237 | 300 | 1.5958 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for error577/0ab8572a-074f-4dff-be51-b76c47b753a5
Base model
HuggingFaceTB/SmolLM2-360M-Instruct
Finetuned
unsloth/SmolLM2-360M-Instruct