distilbert-base-uncased_fold_5_binary_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6980
  • F1: 0.8110

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 288 0.4412 0.7981
0.396 2.0 576 0.4419 0.8078
0.396 3.0 864 0.4955 0.8166
0.2019 4.0 1152 0.6341 0.8075
0.2019 5.0 1440 1.0351 0.7979
0.0808 6.0 1728 1.1818 0.7844
0.0315 7.0 2016 1.2530 0.8051
0.0315 8.0 2304 1.3568 0.7937
0.0143 9.0 2592 1.4009 0.8045
0.0143 10.0 2880 1.5333 0.7941
0.0066 11.0 3168 1.5242 0.7982
0.0066 12.0 3456 1.5752 0.8050
0.0091 13.0 3744 1.5199 0.8046
0.0111 14.0 4032 1.5319 0.8117
0.0111 15.0 4320 1.5333 0.8156
0.0072 16.0 4608 1.5461 0.8192
0.0072 17.0 4896 1.5288 0.8252
0.0048 18.0 5184 1.5725 0.8078
0.0048 19.0 5472 1.5896 0.8138
0.0032 20.0 5760 1.6917 0.8071
0.0028 21.0 6048 1.6608 0.8109
0.0028 22.0 6336 1.7013 0.8122
0.0029 23.0 6624 1.6769 0.8148
0.0029 24.0 6912 1.6906 0.8100
0.0006 25.0 7200 1.6980 0.8110

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.