layoutlm-filtex
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:
- Loss: 0.7280
- Answer: {'precision': 0.7160087719298246, 'recall': 0.8071693448702101, 'f1': 0.7588611272515979, 'number': 809}
- Header: {'precision': 0.33070866141732286, 'recall': 0.35294117647058826, 'f1': 0.34146341463414637, 'number': 119}
- Question: {'precision': 0.7805092186128183, 'recall': 0.8347417840375587, 'f1': 0.8067150635208712, 'number': 1065}
- Overall Precision: 0.7273
- Overall Recall: 0.7948
- Overall F1: 0.7595
- Overall Accuracy: 0.8050
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
1.8197 | 1.0 | 10 | 1.6109 | {'precision': 0.010086455331412104, 'recall': 0.00865265760197775, 'f1': 0.009314703925482368, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.1453125, 'recall': 0.08732394366197183, 'f1': 0.1090909090909091, 'number': 1065} | 0.0750 | 0.0502 | 0.0601 | 0.3438 |
1.4759 | 2.0 | 20 | 1.2685 | {'precision': 0.20723684210526316, 'recall': 0.23362175525339926, 'f1': 0.21963974433468914, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.45848915482423336, 'recall': 0.5755868544600939, 'f1': 0.5104079933388842, 'number': 1065} | 0.3566 | 0.4024 | 0.3781 | 0.6132 |
1.1264 | 3.0 | 30 | 0.9432 | {'precision': 0.4686046511627907, 'recall': 0.49814585908529047, 'f1': 0.4829239065308568, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6134663341645885, 'recall': 0.6929577464788732, 'f1': 0.6507936507936508, 'number': 1065} | 0.5459 | 0.5725 | 0.5589 | 0.7184 |
0.8604 | 4.0 | 40 | 0.7865 | {'precision': 0.6155484558040468, 'recall': 0.7144622991347342, 'f1': 0.6613272311212816, 'number': 809} | {'precision': 0.1590909090909091, 'recall': 0.058823529411764705, 'f1': 0.08588957055214724, 'number': 119} | {'precision': 0.6785079928952042, 'recall': 0.7173708920187793, 'f1': 0.6973984481971702, 'number': 1065} | 0.6396 | 0.6769 | 0.6577 | 0.7536 |
0.6767 | 5.0 | 50 | 0.7196 | {'precision': 0.6316916488222698, 'recall': 0.7292954264524104, 'f1': 0.6769936890418818, 'number': 809} | {'precision': 0.19480519480519481, 'recall': 0.12605042016806722, 'f1': 0.15306122448979592, 'number': 119} | {'precision': 0.6669266770670826, 'recall': 0.8028169014084507, 'f1': 0.7285896889646357, 'number': 1065} | 0.6367 | 0.7326 | 0.6813 | 0.7738 |
0.5702 | 6.0 | 60 | 0.6952 | {'precision': 0.639, 'recall': 0.7898640296662547, 'f1': 0.7064676616915423, 'number': 809} | {'precision': 0.20454545454545456, 'recall': 0.15126050420168066, 'f1': 0.17391304347826086, 'number': 119} | {'precision': 0.7217915590008613, 'recall': 0.7868544600938967, 'f1': 0.752920035938904, 'number': 1065} | 0.6647 | 0.7501 | 0.7049 | 0.7819 |
0.4943 | 7.0 | 70 | 0.6772 | {'precision': 0.6741693461950696, 'recall': 0.7775030902348579, 'f1': 0.722158438576349, 'number': 809} | {'precision': 0.256198347107438, 'recall': 0.2605042016806723, 'f1': 0.25833333333333336, 'number': 119} | {'precision': 0.7392795883361921, 'recall': 0.8093896713615023, 'f1': 0.7727476467951592, 'number': 1065} | 0.6856 | 0.7637 | 0.7225 | 0.7892 |
0.441 | 8.0 | 80 | 0.6809 | {'precision': 0.6515151515151515, 'recall': 0.7972805933250927, 'f1': 0.717065036131184, 'number': 809} | {'precision': 0.25225225225225223, 'recall': 0.23529411764705882, 'f1': 0.2434782608695652, 'number': 119} | {'precision': 0.742540494458653, 'recall': 0.8178403755868544, 'f1': 0.778373547810545, 'number': 1065} | 0.6790 | 0.7747 | 0.7237 | 0.7882 |
0.3859 | 9.0 | 90 | 0.6842 | {'precision': 0.6882416396979504, 'recall': 0.788627935723115, 'f1': 0.7350230414746545, 'number': 809} | {'precision': 0.28688524590163933, 'recall': 0.29411764705882354, 'f1': 0.2904564315352697, 'number': 119} | {'precision': 0.7545064377682403, 'recall': 0.8253521126760563, 'f1': 0.788340807174888, 'number': 1065} | 0.7010 | 0.7787 | 0.7378 | 0.7950 |
0.3813 | 10.0 | 100 | 0.6972 | {'precision': 0.6871686108165429, 'recall': 0.8009888751545118, 'f1': 0.7397260273972602, 'number': 809} | {'precision': 0.336283185840708, 'recall': 0.31932773109243695, 'f1': 0.32758620689655166, 'number': 119} | {'precision': 0.7651646447140381, 'recall': 0.8291079812206573, 'f1': 0.7958539882830105, 'number': 1065} | 0.7100 | 0.7873 | 0.7466 | 0.8040 |
0.3202 | 11.0 | 110 | 0.7074 | {'precision': 0.7015250544662309, 'recall': 0.796044499381953, 'f1': 0.7458019687319051, 'number': 809} | {'precision': 0.3253968253968254, 'recall': 0.3445378151260504, 'f1': 0.33469387755102037, 'number': 119} | {'precision': 0.7665805340223945, 'recall': 0.8356807511737089, 'f1': 0.7996406109613656, 'number': 1065} | 0.7143 | 0.7903 | 0.7504 | 0.7938 |
0.3009 | 12.0 | 120 | 0.7242 | {'precision': 0.7027027027027027, 'recall': 0.8034610630407911, 'f1': 0.7497116493656287, 'number': 809} | {'precision': 0.32786885245901637, 'recall': 0.33613445378151263, 'f1': 0.33195020746887965, 'number': 119} | {'precision': 0.7851387645478961, 'recall': 0.8234741784037559, 'f1': 0.8038496791934006, 'number': 1065} | 0.7241 | 0.7863 | 0.7539 | 0.8031 |
0.2915 | 13.0 | 130 | 0.7256 | {'precision': 0.705945945945946, 'recall': 0.8071693448702101, 'f1': 0.7531718569780853, 'number': 809} | {'precision': 0.33064516129032256, 'recall': 0.3445378151260504, 'f1': 0.33744855967078186, 'number': 119} | {'precision': 0.7808939526730938, 'recall': 0.8366197183098592, 'f1': 0.8077969174977334, 'number': 1065} | 0.7237 | 0.7953 | 0.7578 | 0.8024 |
0.2644 | 14.0 | 140 | 0.7278 | {'precision': 0.712882096069869, 'recall': 0.8071693448702101, 'f1': 0.7571014492753623, 'number': 809} | {'precision': 0.3282442748091603, 'recall': 0.36134453781512604, 'f1': 0.344, 'number': 119} | {'precision': 0.7841409691629956, 'recall': 0.8356807511737089, 'f1': 0.8090909090909091, 'number': 1065} | 0.7269 | 0.7958 | 0.7598 | 0.8034 |
0.2654 | 15.0 | 150 | 0.7280 | {'precision': 0.7160087719298246, 'recall': 0.8071693448702101, 'f1': 0.7588611272515979, 'number': 809} | {'precision': 0.33070866141732286, 'recall': 0.35294117647058826, 'f1': 0.34146341463414637, 'number': 119} | {'precision': 0.7805092186128183, 'recall': 0.8347417840375587, 'f1': 0.8067150635208712, 'number': 1065} | 0.7273 | 0.7948 | 0.7595 | 0.8050 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for elieli/layoutlm-filtex
Base model
microsoft/layoutlm-base-uncased